Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1968 May 1;37(2):424–444. doi: 10.1083/jcb.37.2.424

NEW EVIDENCE SUPPORTING THE LINKAGE TO EXTRACELLULAR SPACE OF OUTER SEGMENT SACCULES OF FROG CONES BUT NOT RODS

Adolph I Cohen 1
PMCID: PMC2107419  PMID: 5656400

Abstract

Previous electron microscopic examinations of outer segments of photoreceptors suggest that many flattened saccules of cones are continuous with the cell membrane and that their lumina connect with the extracellular compartment but that most saccules in rods appear to lack these connections. The saccules probably contain photolabile pigment, and certain potentials appear to result from dipole formation during pigment bleaching. The detection of dipoles from rod saccules may require that the lumina of rod saccules connect with extracellular space, and questions have been raised whether the interpretation of micrographs is correct or the isolation of rod saccules is the result of artifact. Accordingly, lanthanum and barium precipitates were produced near fixed and unfixed frog photoreceptors. Lanthanum precipitates appeared to infiltrate the saccules of fixed cones and the few surviving cones exposed prior to fixation, but no rod saccules were infiltrated except occasional, most basal saccules or saccules within narrow zones of probable damage. Barium precipitates did not infiltrate saccules of either variety of unfixed photoreceptor, but they did occasionally infiltrate around the saccules at points of damage in rod outer segments. The results thus support the view of the patency of saccules of frog cones and are consistent with, but do not prove, the isolation of saccules of frog rods.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arden G. B., Ikeda H. A new property of the early receptor potential of rat retina. Nature. 1965 Dec 11;208(5015):1100–1101. doi: 10.1038/2081100a0. [DOI] [PubMed] [Google Scholar]
  2. Arden G. B., Ikeda H., Siegel I. M. Effects of light-adaptation on the early receptor potential. Vision Res. 1966 Aug;6(7):357–371. doi: 10.1016/0042-6989(66)90046-0. [DOI] [PubMed] [Google Scholar]
  3. Arden G. B., Ikeda H., Siegel I. M. New components of the mammalian receptor potential and their relation to visual photochemistry. Vision Res. 1966 Aug;6(7):373–384. doi: 10.1016/0042-6989(66)90047-2. [DOI] [PubMed] [Google Scholar]
  4. BROWN K. T., MURAKAMI M. A NEW RECEPTOR POTENTIAL OF THE MONKEY RETINA WITH NO DETECTABLE LATENCY. Nature. 1964 Feb 8;201:626–628. doi: 10.1038/201626a0. [DOI] [PubMed] [Google Scholar]
  5. BROWN K. T., WATANABE K. Rod receptor potential from the retina of the night monkey. Nature. 1962 Nov 10;196:547–550. doi: 10.1038/196547a0. [DOI] [PubMed] [Google Scholar]
  6. Brindley G. S., Gardner-Medwin A. R. The origin of the early receptor potential of the retina. J Physiol. 1966 Jan;182(1):185–194. doi: 10.1113/jphysiol.1966.sp007817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown K. T. An early potential evoked by light from the pigment epithelium-choroid complex of the eye of the toad. Nature. 1965 Sep 18;207(5003):1249–1253. doi: 10.1038/2071249a0. [DOI] [PubMed] [Google Scholar]
  8. Brown K. T., Crawford J. M. Intracellular recording of rapid light-evoked responses from pigment epithelium cells of the frog eye. Vision Res. 1967 Mar;7(3):149–163. doi: 10.1016/0042-6989(67)90080-6. [DOI] [PubMed] [Google Scholar]
  9. Brown K. T., Crawford J. M. Melanin and the rapid light-evoked responses from pigment epithelium cells of the frog eye. Vision Res. 1967 Mar;7(3):165–178. doi: 10.1016/0042-6989(67)90081-8. [DOI] [PubMed] [Google Scholar]
  10. Brown K. T., Watanabe K., Murakami M. The early and late receptor potentials of monkey cones and rods. Cold Spring Harb Symp Quant Biol. 1965;30:457–482. doi: 10.1101/sqb.1965.030.01.045. [DOI] [PubMed] [Google Scholar]
  11. COHEN A. I. NEW DETAILS OF THE ULTRASTRUCTURE OF THE OUTER SEGMENTS AND CILIARY CONNECTIVES OF THE RODS OF HUMAN AND MACAQUE RETINAS. Anat Rec. 1965 May;152:63–79. doi: 10.1002/ar.1091520108. [DOI] [PubMed] [Google Scholar]
  12. COHEN A. I. The fine structure of the extrafoveal receptors of the Rhesus monkey. Exp Eye Res. 1961 Dec;1:128–136. doi: 10.1016/s0014-4835(61)80018-3. [DOI] [PubMed] [Google Scholar]
  13. COHEN A. I. The fine structure of the visual receptors of the pigeon. Exp Eye Res. 1963 Jan;2:88–97. doi: 10.1016/s0014-4835(63)80028-7. [DOI] [PubMed] [Google Scholar]
  14. CONE R. A. EARLY RECEPTOR POTENTIAL OF THE VERTEBRATE RETINA. Nature. 1964 Nov 21;204:736–739. doi: 10.1038/204736a0. [DOI] [PubMed] [Google Scholar]
  15. Cohen A. I. Some electron microscopic observations on inter-receptor contacts in the human and macaque retinae. J Anat. 1965 Jul;99(Pt 3):595–610. [PMC free article] [PubMed] [Google Scholar]
  16. Crawford J. M., Gage P. W., Brown K. T. Rapid light-evoked potentials at extremes of pH from the frog's retina and pigment epithelium, and from a synthetic melanin. Vision Res. 1967 Jul;7(7):539–551. doi: 10.1016/0042-6989(67)90063-6. [DOI] [PubMed] [Google Scholar]
  17. DENTON E. J. The contributions of the orientated photosensitive and other molecules to the absorption of whole retina. Proc R Soc Lond B Biol Sci. 1959 Jan 27;150(938):78–94. doi: 10.1098/rspb.1959.0009. [DOI] [PubMed] [Google Scholar]
  18. DOGGENWEILER C. F., FRENK S. STAINING PROPERTIES OF LANTHANUM ON CELL MEMBRANES. Proc Natl Acad Sci U S A. 1965 Feb;53:425–430. doi: 10.1073/pnas.53.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. DOWLING J. E. Chemistry of visual adaptation in the rat. Nature. 1960 Oct 8;188:114–118. doi: 10.1038/188114a0. [DOI] [PubMed] [Google Scholar]
  20. DOWLING J. E. NEURAL AND PHOTOCHEMICAL MECHANISMS OF VISUAL ADAPTATION IN THE RAT. J Gen Physiol. 1963 Jul;46:1287–1301. doi: 10.1085/jgp.46.6.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. GRUNBAUM B. W., WELLINGS S. R. Electron microscopy of cytoplasmic structures in frozen-dried mouse pancreas. J Ultrastruct Res. 1960 Oct;4:73–80. doi: 10.1016/s0022-5320(60)80007-x. [DOI] [PubMed] [Google Scholar]
  22. Goldstein E. B. Early receptor potential of the isolated frog (Rana pipiens) retina. Vision Res. 1967 Nov;7(11):837–845. doi: 10.1016/0042-6989(67)90004-1. [DOI] [PubMed] [Google Scholar]
  23. Hagins W. A., McGaughy R. E. Molecular and thermal origins of fast photoelectric effects in the squid retina. Science. 1967 Aug 18;157(3790):813–816. doi: 10.1126/science.157.3790.813. [DOI] [PubMed] [Google Scholar]
  24. Lasansky A. Functional implications of structural findings in retinal glial cells. Prog Brain Res. 1965;15:48–72. doi: 10.1016/s0079-6123(08)60939-5. [DOI] [PubMed] [Google Scholar]
  25. Lesseps R. J. The removal by phospholipase C of a layer of lanthanum-staining material external to the cell membrane in embryonic chick cells. J Cell Biol. 1967 Jul;34(1):173–183. doi: 10.1083/jcb.34.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lettvin J. Y., Platt J. R., Wald G., Brown K. T. General discussion: early receptor potential. Cold Spring Harb Symp Quant Biol. 1965;30:501–504. doi: 10.1101/sqb.1965.030.01.048. [DOI] [PubMed] [Google Scholar]
  27. MOODY M. F., ROBERTSON J. D. The fine structure of some retinal photoreceptors. J Biophys Biochem Cytol. 1960 Feb;7:87–92. doi: 10.1083/jcb.7.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. NILSSON S. E. RECEPTOR CELL OUTER SEGMENT DEVELOPMENT AND ULTRASTRUCTURE OF THE DISK MEMBRANES IN THE RETINA OF THE TADPOLE (RANA PIPIENS). J Ultrastruct Res. 1964 Dec;11:581–602. doi: 10.1016/s0022-5320(64)80084-8. [DOI] [PubMed] [Google Scholar]
  29. NILSSON S. E. THE ULTRASTRUCTURE OF THE RECEPTOR OUTER SEGMENTS IN THE RETINA OF THE LEOPARD FROG (RANA PIPIENS). J Ultrastruct Res. 1965 Feb;12:207–231. doi: 10.1016/s0022-5320(65)80016-8. [DOI] [PubMed] [Google Scholar]
  30. PAK W. L., CONE R. A. ISOLATION AND IDENTIFICATION OF THE INITIAL PEAK OF THE EARLY RECEPTOR POTENTIAL. Nature. 1964 Nov 28;204:836–838. doi: 10.1038/204836a0. [DOI] [PubMed] [Google Scholar]
  31. Pak W. L., Ebrey T. G. Early receptor potentials of rods and cones in rodents. J Gen Physiol. 1966 Jul;49(6):1199–1208. doi: 10.1085/jgp.0491199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. RUSHTON W. A. THE SENSITIVITY OF RODS UNDER ILLUMINATION. J Physiol. 1965 May;178:141–160. doi: 10.1113/jphysiol.1965.sp007620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Revel J. P., Karnovsky M. J. Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J Cell Biol. 1967 Jun;33(3):C7–C12. doi: 10.1083/jcb.33.3.c7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. SCARPELLI D. G., CRAIG E. L. The fine localization of nucleoside triphosphatase activity in the retina of the frog. J Cell Biol. 1963 May;17:279–288. doi: 10.1083/jcb.17.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. SJOSTRAND F. S., BAKER R. F. Fixation by freezing-drying for electron microscopy of tissue cells. J Ultrastruct Res. 1958 Apr;1(3):239–246. doi: 10.1016/s0022-5320(58)80005-2. [DOI] [PubMed] [Google Scholar]
  36. Tomita T., Kaneko A., Murakami M., Pautler E. L. Spectral response curves of single cones in the carp. Vision Res. 1967 Jul;7(7):519–531. doi: 10.1016/0042-6989(67)90061-2. [DOI] [PubMed] [Google Scholar]
  37. WALD G., BROWN P. K., GIBBONS I. R. The problem of visual excitation. J Opt Soc Am. 1963 Jan;53:20–35. doi: 10.1364/josa.53.000020. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES