Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1968 Jun 1;37(3):703–715. doi: 10.1083/jcb.37.3.703

DEVELOPMENT OF THE METANEPHRIC KIDNEY

Protein and Nucleic Acid Synthesis

G C Priestley 1, R A Malt 1
PMCID: PMC2107437  PMID: 11905202

Abstract

The metanephric kidney was studied in fetal and older mice beginning at 16 days after mating of the parents. Polyribosomes from fetal kidneys labeled in vitro with 14C-labeled amino acids had 10–20 times more acid-precipitable radioactivity associated with them than polysomes from adult kidneys similarly labeled. Between 3 and 6 days after birth the rate incorporation of labeled amino acids by polyribosomes from neonatal kidneys declined sharply to only twice the value found for adult kidneys. There was no change in the shape of the polyribosome profile with increasing age, but before birth few, if any, ribosomes were bound to membranes compared with 20% 2 days after birth and between 20 and 30% in the adult. Total protein represented less than 10% of the wet weight in the fetal kidney but increased to 17% of the wet weight in the adult kidney. There was a steady decline in the concentration of RNA and DNA with respect to dry weight throughout kidney development. DNA concentration declined more rapidly than RNA concentration, so that the milligram to milligram ratio of RNA to DNA increased. In males the RNA/DNA ratio was stable at 1.3 at 40 days after birth; but in females the decline in DNA concentration was more protracted, and at 200 days after birth the RNA/DNA ratio was only 0.99. Thus, total nucleic acids show only gradual changes in concentration throughout development of the kidney, but a sharp change in the synthetic activity of the ribosomes and in their binding to membranes occurs in kidneys soon after birth.

Full Text

The Full Text of this article is available as a PDF (851.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARLOW J. J., MATHIAS A. P., WILLIAMSON R., GAMMACK D. B. A SIMPLE METHOD FOR THE QUANTITATIVE ISOLATION OF UNDEGRADED HIGH MOLECULAR WEIGHT RIBONUCLEIC ACID. Biochem Biophys Res Commun. 1963 Sep 10;13:61–66. doi: 10.1016/0006-291x(63)90163-3. [DOI] [PubMed] [Google Scholar]
  2. Blobel G., Potter V. R. Studies on free and membrane-bound ribosomes in rat liver. I. Distribution as related to total cellular RNA. J Mol Biol. 1967 Jun 14;26(2):279–292. doi: 10.1016/0022-2836(67)90297-5. [DOI] [PubMed] [Google Scholar]
  3. Bloemendal H., Bont W. S., de Vries M., Benedetti E. L. Isolation and properties of polyribosomes and fragments of the endoplasmic reticulum from rat liver. Biochem J. 1967 Apr;103(1):177–182. doi: 10.1042/bj1030177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Byers B. Structure and formation of ribosome crystals in hypothermic chick embryo cells. J Mol Biol. 1967 Jun 14;26(2):155–167. doi: 10.1016/0022-2836(67)90288-4. [DOI] [PubMed] [Google Scholar]
  5. CARO L. G., PALADE G. E. PROTEIN SYNTHESIS, STORAGE, AND DISCHARGE IN THE PANCREATIC EXOCRINE CELL. AN AUTORADIOGRAPHIC STUDY. J Cell Biol. 1964 Mar;20:473–495. doi: 10.1083/jcb.20.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CERIOTTI G. A microchemical determination of desoxyribonucleic acid. J Biol Chem. 1952 Sep;198(1):297–303. [PubMed] [Google Scholar]
  7. CLARK S. L., Jr Cellular differentiation in the kidneys of newborn mice studies with the electron microscope. J Biophys Biochem Cytol. 1957 May 25;3(3):349–362. doi: 10.1083/jcb.3.3.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DUCK-CHONG C., POLLAK J. K., NORTH R. J. THE RELATION BETWEEN THE INTRACELLULAR RIBONUCLEIC ACID DISTRIBUTION AND AMINO ACID INCORPORATION IN THE LIVER OF THE DEVELOPING CHICK EMBRYO. J Cell Biol. 1964 Jan;20:25–35. doi: 10.1083/jcb.20.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. FRAENKEL-CONRAT H., SINGER B., TSUGITA A. Purification of viral RNA by means of bentonite. Virology. 1961 May;14:54–58. doi: 10.1016/0042-6822(61)90131-3. [DOI] [PubMed] [Google Scholar]
  10. HANKS J. H., WALLACE R. E. Relation of oxygen and temperature in the preservation of tissues by refrigeration. Proc Soc Exp Biol Med. 1949 Jun;71(2):196–200. doi: 10.3181/00379727-71-17131. [DOI] [PubMed] [Google Scholar]
  11. HENSHAW E. C., BOJARSKI T. B., HIATT H. H. PROTEIN SYNTHESIS BY FREE AND BOUND RAT LIVER RIBOSOMES IN VIVO AND IN VITRO. J Mol Biol. 1963 Aug;7:122–129. doi: 10.1016/s0022-2836(63)80041-8. [DOI] [PubMed] [Google Scholar]
  12. HOPSU V. K., RUPONEN S., TALANTI S. Leucine aminopeptidase in the foetal kidney of the rat. Experientia. 1961 Jun 15;17:271–272. doi: 10.1007/BF02161437. [DOI] [PubMed] [Google Scholar]
  13. Halliburton I. W., Thomson R. Y. Chemical aspects of compensatory renal hypertrophy. Cancer Res. 1965 Dec;25(11):1882–1887. [PubMed] [Google Scholar]
  14. Hallinan T., Munro H. N. Protein synthesis and ribonucleic acid turnover in rat-liver microsome subfractions. Biochim Biophys Acta. 1965 Oct 11;108(2):285–296. doi: 10.1016/0005-2787(65)90013-4. [DOI] [PubMed] [Google Scholar]
  15. KOCHAKIAN C. D., HARRISON D. G. Regulation of nucleic acid synthesis by androgens. Endocrinology. 1962 Jan;70:99–108. doi: 10.1210/endo-70-1-99. [DOI] [PubMed] [Google Scholar]
  16. KOCHAKIAN C. D., HILL J., AONUMA S. Regulation of protein biosynthesis in mouse kidney by androgens. Endocrinology. 1963 Mar;72:354–363. doi: 10.1210/endo-72-3-354. [DOI] [PubMed] [Google Scholar]
  17. Leak L. V., Rosen V. J., Jr Early ultrastructural alterations in proximal tubular cells after unilateral nephrectomy and x-irradiation. J Ultrastruct Res. 1966 Jun;15(3):326–348. doi: 10.1016/s0022-5320(66)80112-0. [DOI] [PubMed] [Google Scholar]
  18. Malt R. A., LeMaitre D. A. Differential labeling of 28-S RNA in free and membrane-bound ribosomes of kidney. Biochim Biophys Acta. 1967 Aug 22;145(1):190–192. [PubMed] [Google Scholar]
  19. Malt R. A., Miller W. I. Sequential changes in classes of RNA during compensatory growth of the kidney. J Exp Med. 1967 Jul 1;126(1):1–13. doi: 10.1084/jem.126.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Munro H. N., Fleck A. Recent developments in the measurement of nucleic acids in biological materials. A supplementary review. Analyst. 1966 Feb;91(79):78–88. doi: 10.1039/an9669100078. [DOI] [PubMed] [Google Scholar]
  21. OLIVER I. T., BALLARD F. J., SHIELD J., BENTLEY P. J. Liver growth in early postpartum rat. Dev Biol. 1962 Feb;4:108–116. doi: 10.1016/0012-1606(62)90035-0. [DOI] [PubMed] [Google Scholar]
  22. ROSENBERG L. E., BLAIR A., SEGAL S. Transport of amino acids by slices of rat-kidney cortex. Biochim Biophys Acta. 1961 Dec 23;54:479–488. doi: 10.1016/0006-3002(61)90088-9. [DOI] [PubMed] [Google Scholar]
  23. SMITH C. H., KISSANE J. M. DISTRIBUTION OF FORMS OF LACTIC DEHYDROGENASE WITHIN THE DEVELOPING RAT KIDNEY. Dev Biol. 1963 Oct;8:151–164. doi: 10.1016/0012-1606(63)90039-3. [DOI] [PubMed] [Google Scholar]
  24. Schain R. J., Carver M. J., Copenhaver J. H., Underdahl N. R. Protein metabolism in the developing brain: influence of birth and gestational age. Science. 1967 May 19;156(3777):984–986. doi: 10.1126/science.156.3777.984. [DOI] [PubMed] [Google Scholar]
  25. Székely M., Beney L., Gaál O., Vincze S. Electrophoretic studies on proteins and ribonucleic acids of free and membrane-bound ribosomes. Biochim Biophys Acta. 1966 Sep;123(3):574–584. doi: 10.1016/0005-2787(66)90224-3. [DOI] [PubMed] [Google Scholar]
  26. Vetter M. R., Gibley C. W., Jr Morphogenesis and histochemistry of the developing mouse kidney. J Morphol. 1966 Oct;120(2):135–155. doi: 10.1002/jmor.1051200203. [DOI] [PubMed] [Google Scholar]
  27. Winick M., Noble A. Quantitative changes in DNA, RNA, and protein during prenatal and postnatal growth in the rat. Dev Biol. 1965 Dec;12(3):451–466. doi: 10.1016/0012-1606(65)90009-6. [DOI] [PubMed] [Google Scholar]
  28. ZUMOFF B., PACHTER M. R. STUDIES OF RAT KIDNEY AND LIVER GROWTH USING TOTAL NUCLEAR COUNTS. Am J Anat. 1964 May;114:479–493. doi: 10.1002/aja.1001140308. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES