Abstract
The loss of kinetoplast DNA in Leishmania tarentolae, which occurs in the presence of low concentrations of acriflavin, was found to be a result of selective inhibition of replication of this DNA. Nuclear DNA synthesis was relatively unaffected and cell and kinetoplast division proceeded normally for several generations. An approximately equal distribution of parental kinetoplast DNA between daughter kinetoplasts resulted in a decrease in the average amount of DNA per kinetoplast. The final disappearance of the stainable kinetoplast DNA occurred at a cell division in which all the remaining visible kinetoplast DNA was retained by one of the daughter cells. The selective inhibition of kinetoplast DNA synthesis was caused by a selective localization of acriflavin in the kinetoplast. The apparent intracellular localization of dye and the extent of uptake at a low dye concentration could be manipulated, respectively, by varying the hemin (or protoporphyrin IX) concentration in the medium and by adding red blood cell extract (or hemoglobin). Hemin and protoporphyrin IX were found to form a complex with acriflavin. During growth in acriflavin, cells exhibited an increasing impairment of colony-forming ability and rate of respiration. No change in the electrophoretic pattern of total cell soluble proteins was apparent. The data fit the working hypothesis that the loss of kinetoplast DNA leads to a respiratory defect which then leads to a decrease in biosynthetic reactions and eventual cell death. A possible use of the selective localization of acriflavin in the kinetoplast to photooxidize selectively the kinetoplast DNA is suggested.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BULDER C. J. LETHALITY OF THE PETITE MUTATION IN PETITE NEGATIVE YEASTS. Antonie Van Leeuwenhoek. 1964;30:442–454. doi: 10.1007/BF02046758. [DOI] [PubMed] [Google Scholar]
- BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DUBUY H. G., MATTERN C. F., RILEY F. L. ISOLATION AND CHARACTERIZATION OF DNA FROM KINETOPLASTS OF LEISHMANIA ENRIETTII. Science. 1965 Feb 12;147(3659):754–756. doi: 10.1126/science.147.3659.754. [DOI] [PubMed] [Google Scholar]
- Du Buy H. G., Mattern C. F., Riley F. L. Comparison of the DNA's obtained from brain nuclei and mitochondria of mice and from the nuclei and kinetoplasts of Leishmania enriettii. Biochim Biophys Acta. 1966 Aug 17;123(2):298–305. doi: 10.1016/0005-2787(66)90282-6. [DOI] [PubMed] [Google Scholar]
- Evans T. E. Synthesis of a cytoplasmic DNA during the G2 interphase of Physarum polycephalum. Biochem Biophys Res Commun. 1966 Mar 22;22(6):678–683. doi: 10.1016/0006-291x(66)90200-2. [DOI] [PubMed] [Google Scholar]
- FREIFELDER D., DAVISON P. F., GEIDUSCHEK E. P. Damage by visible light to the acridine orange--DNA complex. Biophys J. 1961 May;1:389–400. doi: 10.1016/s0006-3495(61)86897-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GUDE W. D., UPTON A. C., ODELL T. T., Jr Giemsa staining of autoradiograms prepared with stripping film. Stain Technol. 1955 Jul;30(4):161–162. doi: 10.3109/10520295509114458. [DOI] [PubMed] [Google Scholar]
- Guttman H. N., Eisenman R. N. Acriflavin-induced loss of kinetoplast deoxyribonucleic acid in Crithidia fasciculata (Culex pipiens strain). Nature. 1965 Sep 18;207(5003):1280–1281. doi: 10.1038/2071280a0. [DOI] [PubMed] [Google Scholar]
- HONIGBERG B. M., BALAMUTH W., BOVEE E. C., CORLISS J. O., GOJDICS M., HALL R. P., KUDO R. R., LEVINE N. D., LOEBLICH A. R., Jr, WEISER J. A REVISED CLASSIFICATION OF THE PHYLUM PROTOZOA. J Protozool. 1964 Feb;11:7–20. doi: 10.1111/j.1550-7408.1964.tb01715.x. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Meselson M., Stahl F. W., Vinograd J. EQUILIBRIUM SEDIMENTATION OF MACROMOLECULES IN DENSITY GRADIENTS. Proc Natl Acad Sci U S A. 1957 Jul 15;43(7):581–588. doi: 10.1073/pnas.43.7.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NEUFELD H. A., LEVAY A. N., LUCAS F. V., MARTIN A. P., STOTZ E. Peroxidase and cytochrome oxidase in rat tissues. J Biol Chem. 1958 Jul;233(1):209–211. [PubMed] [Google Scholar]
- Neubert D., Helge H., Bass R. Einbau von Thymidin in die Deoxybonucleinsäure von Mitochondrien. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1965 Dec 6;252(3):258–268. [PubMed] [Google Scholar]
- ORMEROD W. E. The study of volutin granules in trypanosomes. Trans R Soc Trop Med Hyg. 1961 Jul;55:313–332. doi: 10.1016/0035-9203(61)90100-6. [DOI] [PubMed] [Google Scholar]
- Parsons J. A. Mitochondrial incorporation of tritiated thymidine in Tetrahymena pyriformis. J Cell Biol. 1965 Jun;25(3):641–646. doi: 10.1083/jcb.25.3.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RUDZINSKA M. A., D ALESANDRO P. A., TRAGER W. THE FINE STRUCTURE OF LEISHMANIA DONOVANI AND THE ROLE OF THE KINETOPLAST IN THE LEISHMANI-LEPTOMONAD TRANSFORMATION. J Protozool. 1964 May;11:166–191. doi: 10.1111/j.1550-7408.1964.tb01739.x. [DOI] [PubMed] [Google Scholar]
- Riou G., Pautrizel R., Paoletti C. Fractionnement et caractérisation de l'acide désoxyribonucléique (DNA) de trypanosome (Trypanosoma equiperdum) C R Acad Sci Hebd Seances Acad Sci D. 1966 Jun 1;262(22):2376–2379. [PubMed] [Google Scholar]
- SAITO H., MIURA K. I. PREPARATION OF TRANSFORMING DEOXYRIBONUCLEIC ACID BY PHENOL TREATMENT. Biochim Biophys Acta. 1963 Aug 20;72:619–629. [PubMed] [Google Scholar]
- SCHILDKRAUT C. L., MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol. 1962 Jun;4:430–443. doi: 10.1016/s0022-2836(62)80100-4. [DOI] [PubMed] [Google Scholar]
- SCHULZ H., MACCLURE E. [Electron microscopic study of Trypanosoma cruzi with special reference to periplasts and blepharoplasts]. Z Zellforsch Mikrosk Anat. 1961;55:389–412. [PubMed] [Google Scholar]
- SIMON M. I., VAN VUNAKIS H. The photodynamic reaction of methylene blue with deoxyribonucleic acid. J Mol Biol. 1962 Jun;4:488–499. doi: 10.1016/s0022-2836(62)80104-1. [DOI] [PubMed] [Google Scholar]
- STEINERT M. LE CHONDRIOME DE TRYPANOSOMA MEGA. OBSERVATIONS IN VIVO ET PAR LA R'EACTION CYTOCHIMIQUE DE LA NADH-DIAPHORASE. J Cell Biol. 1964 Jan;20:192–197. [PMC free article] [PubMed] [Google Scholar]
- STEINERT M., STEINERT G. [The synthesis of desoxyri-bonucleic acid during the division cycle of Trypanosoma mega]. J Protozool. 1962 May;9:203–211. doi: 10.1111/j.1550-7408.1962.tb02607.x. [DOI] [PubMed] [Google Scholar]
- Steinert M. L'absence d'histone dans le kinétonucléus des trypanosomes. Etude cytochimique. Exp Cell Res. 1965 Aug;39(1):69–73. doi: 10.1016/0014-4827(65)90008-x. [DOI] [PubMed] [Google Scholar]
- TRAGER W., RUDZINSKA M. A. THE RIBOFLAVIN REQUIREMENT AND THE EFFECTS OF ACRIFLAVIN ON THE FINE STRUCTURE OF THE KINETOPLAST OF LEISHMANIA TARENTOLAE. J Protozool. 1964 Feb;11:133–145. doi: 10.1111/j.1550-7408.1964.tb01734.x. [DOI] [PubMed] [Google Scholar]
- TUBBS R. K., DITMARS W. E., Jr, VANWINKLE Q. HETEROGENEITY OF THE INTERACTION OF DNA WITH ACRIFLAVINE. J Mol Biol. 1964 Aug;9:545–557. doi: 10.1016/s0022-2836(64)80226-6. [DOI] [PubMed] [Google Scholar]
- VICKERMAN K. The mechanism of cyclical development in trypanosomes of the Trypanosoma brucei sub-group: an hypothesis based on ultrastructural observations. Trans R Soc Trop Med Hyg. 1962 Nov;56:487–495. doi: 10.1016/0035-9203(62)90072-x. [DOI] [PubMed] [Google Scholar]
- WALKER P. J. Organization of function in trypanosome flagella. Nature. 1961 Mar 25;189:1017–1018. doi: 10.1038/1891017a0. [DOI] [PubMed] [Google Scholar]