Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1968 Jul 1;38(1):176–183. doi: 10.1083/jcb.38.1.176

ADENOSINE TRIPHOSPHATASE ACTIVITY IN THE MEMBRANES OF THE SQUID NERVE FIBER

María Teresa Sabatini 1, Reinaldo Dipolo 1, Raimundo Villegas 1
PMCID: PMC2107454  PMID: 4233981

Abstract

This investigation deals with the localization of sites of ATPase activity, especially of transport ATPase, in nerve fibers of the squid Doryteuthis plei, at the subcellular level. Splitting of ATP liberates inorganic phosphate which reacts with lead to form a precipitate in the tissue. The reaction was made on nerve fibers fixed with glutaraldehyde. Frozen slices were incubated in Wachstein-Meisel medium containing ATP and Pb(NO3)2. Deposits of reaction product were found in the axolemma (towards its axoplasmic side), Schwann cell membranes (mainly at the channels crossing the layer), and mitochondria. Control experiments revealed that no deposits were observed in nerve fibers fixed in osmium tetroxide prior to incubation in the medium containing ATP, or in nerve fibers incubated without substrate or with adenosine monophosphate, adenosine diphosphate, glycerophosphate, or guanosine triphosphate as substrate. For evaluation of transport ATPase activity, these findings were compared with results obtained with nerve fibers treated with G-strophanthin or K-strophanthoside before or after glutaraldehyde fixation. The cardiac glycosides produced a disappearance or diminution of the deposits. The largest inhibitory effect was observed in the axolemma. The findings indicate that the highest ATPase activity is localized in the axolemma and may be due primarily to transport ATPase.

Full Text

The Full Text of this article is available as a PDF (841.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BONTING S. L., CARAVAGGIO L. L. Sodium-potassium-activated adenosine triphosphatase in the squid giant axon. Nature. 1962 Jun 23;194:1180–1181. doi: 10.1038/1941180a0. [DOI] [PubMed] [Google Scholar]
  2. Baker P. F. Phosphorus metabolism of intact crab nerve and its relation to the active transport of ions. J Physiol. 1965 Sep;180(2):383–423. doi: 10.1113/jphysiol.1965.sp007709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DUNHAM E. T., GLYNN I. M. Adenosinetriphosphatase activity and the active movements of alkali metal ions. J Physiol. 1961 Apr;156:274–293. doi: 10.1113/jphysiol.1961.sp006675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Farquhar M. G., Palade G. E. Adenosine triphosphatase localization in amphibian epidermis. J Cell Biol. 1966 Aug;30(2):359–379. doi: 10.1083/jcb.30.2.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GLYNN I. M. Sodium and potassium movements in human red cells. J Physiol. 1956 Nov 28;134(2):278–310. doi: 10.1113/jphysiol.1956.sp005643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GLYNN I. M. The action of cardiac glycosides on sodium and potassium movements in human red cells. J Physiol. 1957 Apr 3;136(1):148–173. doi: 10.1113/jphysiol.1957.sp005749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. MULLINS L. J., FRUMENTO A. S. The concentration dependence of sodium efflux from muscle. J Gen Physiol. 1963 Mar;46:629–654. doi: 10.1085/jgp.46.4.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. POST R. L., MERRITT C. R., KINSOLVING C. R., ALBRIGHT C. D. Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J Biol Chem. 1960 Jun;235:1796–1802. [PubMed] [Google Scholar]
  9. SABATINI D. D., BENSCH K., BARRNETT R. J. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol. 1963 Apr;17:19–58. doi: 10.1083/jcb.17.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. SCHATZMANN H. J. Herzglykoside als Hemmstoffe für den aktiven Kalium- und Natriumtransport durch die Erythrocytenmembran. Helv Physiol Pharmacol Acta. 1953;11(4):346–354. [PubMed] [Google Scholar]
  11. SKOU J. C. ENZYMATIC BASIS FOR ACTIVE TRANSPORT OF NA+ AND K+ ACROSS CELL MEMBRANE. Physiol Rev. 1965 Jul;45:596–617. doi: 10.1152/physrev.1965.45.3.596. [DOI] [PubMed] [Google Scholar]
  12. SKOU J. C. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta. 1957 Feb;23(2):394–401. doi: 10.1016/0006-3002(57)90343-8. [DOI] [PubMed] [Google Scholar]
  13. Steinbach H. B. On the Sodium and Potassium Balance of Isolated Frog Muscles. Proc Natl Acad Sci U S A. 1952 May;38(5):451–455. doi: 10.1073/pnas.38.5.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. TORACK R. M., BARRNETT R. J. THE FINE STRUCTURAL LOCALIZATION OF NUCLEOSIDE PHOSPHATASE ACTIVITY IN THE BLOOD-BRAIN BARRIER. J Neuropathol Exp Neurol. 1964 Jan;23:46–59. doi: 10.1097/00005072-196401000-00004. [DOI] [PubMed] [Google Scholar]
  15. VILLEGAS G. M., VILLEGAS R. Morphogenesis of the Schwann channels in the squid nerve. J Ultrastruct Res. 1963 Apr;8:197–205. doi: 10.1016/s0022-5320(63)90002-9. [DOI] [PubMed] [Google Scholar]
  16. VILLEGAS G. M., VILLEGAS R. The ultrastructure of the giant nerve fibre of the squid: axon-Schwann cell relationship. J Ultrastruct Res. 1960 Jun;3:362–373. doi: 10.1016/s0022-5320(60)90015-0. [DOI] [PubMed] [Google Scholar]
  17. Villegas J., Villegas R., Giménez M. Nature of the Schwann cell electrical potential. Effects of the external ionic concentrations and a cardiac glycoside. J Gen Physiol. 1968 Jan;51(1):47–64. doi: 10.1085/jgp.51.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. WACHSTEIN M., MEISEL E. Histochemistry of hepatic phosphatases of a physiologic pH; with special reference to the demonstration of bile canaliculi. Am J Clin Pathol. 1957 Jan;27(1):13–23. doi: 10.1093/ajcp/27.1.13. [DOI] [PubMed] [Google Scholar]
  19. WHITTAM R. Potassium movements and ATP in human red cells. J Physiol. 1958 Mar 11;140(3):479–497. [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES