Abstract
The esterases of rabbit lung have been investigated from two viewpoints, the cytochemical and the biochemical. To accomplish this objective, we designed and synthesized a series of ester substrates which provide both a cytochemical indicator of the location of the enzyme and a means of following the enzymatic activity in tissue homogenates and subfractions. The substrates are p-nitrophenylthiol esters which yield, upon hydrolysis, carboxylic acid and p-nitrothiophenol. The latter can react with aurous ions to give an electron-opaque deposit; in addition, the strong absorption of p-nitrothiophenol at 410 mµ permits continuous kinetic measurements. Thus, it is possible to correlate the intracellular site of action and the biochemical behavior of the esterases. The new substrates are the thiol analogues of the p-nitrophenyl esters frequently employed as esterase substrates. The rates of hydrolysis of the two series of esters are compared in vitro. During tissue fractionation, most of the esterase activity sediments with a particulate fraction. The effects of a number of common esterase inhibitors, such as diisopropyl phosphorofluoridate and eserine sulfate, are examined, and the effects of enzyme concentration and heat inactivation are shown with the use of the partially purified preparations. The cytochemical work shows that the esterase activity is most prominent in the lamellar bodies of the giant alveolar (type II, septal, or granular pneumatocyte) cells of the lung and to a lesser extent in squamous (type I, or membranous pneumatocyte) epithelial and endothelial cells. In both the cytochemical and biochemical studies, the enzymes are inhibited by diisopropyl phosphorofluoridate and phenyl methylsulfonyl fluoride but are insensitive to eserine sulfate.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Armstrong H. J., Kuenzig M. C., Peltier L. F. Lung lipase levels in normal rats and rats with experimentally produced fat embolism. Proc Soc Exp Biol Med. 1967 Mar;124(3):959–961. doi: 10.3181/00379727-124-31896. [DOI] [PubMed] [Google Scholar]
- BARRNETT R. J., SELIGMAN A. M. Histochemical demonstration of esterases by production of indigo. Science. 1951 Nov 30;114(2970):579–582. doi: 10.1126/science.114.2970.579. [DOI] [PubMed] [Google Scholar]
- BARRNETT R. J. The fine structural localization of acetylcholinesterase at the myoneural junction. J Cell Biol. 1962 Feb;12:247–262. doi: 10.1083/jcb.12.2.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BENSCH K., SCHAEFER K., AVERY M. E. GRANULAR PNEUMOCYTES: ELECTRON MICROSCOPIC EVIDENCE OF THEIR EXOCRINIC FUNCTION. Science. 1964 Sep 18;145(3638):1318–1319. doi: 10.1126/science.145.3638.1318-a. [DOI] [PubMed] [Google Scholar]
- BONDURANT S., MILLER D. A. A method for producing surfaceactive extracts of mammalian lungs. J Appl Physiol. 1962 Jan;17:167–168. doi: 10.1152/jappl.1962.17.1.167. [DOI] [PubMed] [Google Scholar]
- BUCKINGHAM S., AVERY M. E. Time of appearance of lung surfactant in the foetal mouse. Nature. 1962 Feb 17;193:688–689. doi: 10.1038/193688a0. [DOI] [PubMed] [Google Scholar]
- BUNDY H. F. A new spectrophotometric method for the determination of chymotrypsin activity. Anal Biochem. 1962 May;3:431–435. doi: 10.1016/0003-2697(62)90072-6. [DOI] [PubMed] [Google Scholar]
- CARO L. G., PALADE G. E. PROTEIN SYNTHESIS, STORAGE, AND DISCHARGE IN THE PANCREATIC EXOCRINE CELL. AN AUTORADIOGRAPHIC STUDY. J Cell Biol. 1964 Mar;20:473–495. doi: 10.1083/jcb.20.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DANNENBERG A. M., Jr, SMITH E. L. Action of proteinase I of bovine lung; hydrolysis of the oxidized B chain of insulin; polymer formation from amino acid esters. J Biol Chem. 1955 Jul;215(1):55–66. [PubMed] [Google Scholar]
- DANNENBERG A. M., Jr, SMITH E. L. Proteolytic enzymes of lung. J Biol Chem. 1955 Jul;215(1):45–54. [PubMed] [Google Scholar]
- HOLT S. J. A new principle for the histochemical localization of hydrolytic enzymes. Nature. 1952 Feb 16;169(4294):271–273. doi: 10.1038/169271a0. [DOI] [PubMed] [Google Scholar]
- Holmes R. S., Masters C. J. The developmental multiplicity and isoenzyme status of cavian esterases. Biochim Biophys Acta. 1967 Mar 15;132(2):379–399. doi: 10.1016/0005-2744(67)90157-x. [DOI] [PubMed] [Google Scholar]
- KISCH B. Electron microscopy of the lungs in acute penumonia. Exp Med Surg. 1960;18:273–296. [PubMed] [Google Scholar]
- KLAUS M. H., CLEMENTS J. A., HAVEL R. J. Composition of surface-active material isolated from beef lung. Proc Natl Acad Sci U S A. 1961 Nov 15;47:1858–1859. doi: 10.1073/pnas.47.11.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KLAUS M., REISS O. K., TO OLEY W. H., PIEL C., CLEMENTS J. A. Alveolar epithelial cell mitochondria as source of the surface-active lung lining. Science. 1962 Sep 7;137(3532):750–751. doi: 10.1126/science.137.3532.750. [DOI] [PubMed] [Google Scholar]
- KOELLE G. B., FOROGLOU-KERAMEOS C. ELECTRON MICROSCOPIC LOCALIZATION OF CHOLINESTERASES IN A SYMPATHETIC GANGLION BY A GOLD-THIOLACETIC ACID METHOD. Life Sci. 1965 Feb;4:417–424. doi: 10.1016/0024-3205(65)90161-x. [DOI] [PubMed] [Google Scholar]
- KOELLE G. B., FRIEDENWALD J. A. A histochemical method for localizing cholinesterase activity. Proc Soc Exp Biol Med. 1949 Apr;70(4):617–622. doi: 10.3181/00379727-70-17013. [DOI] [PubMed] [Google Scholar]
- Koelle G. B., Gromadzki C. G. Comparison of the gold-thiocholine and gold-thiolacetic acid methods for the histochemical localization of acetylcholinesterase and cholinesterases. J Histochem Cytochem. 1966 Jun;14(6):443–454. doi: 10.1177/14.6.443. [DOI] [PubMed] [Google Scholar]
- NACHLAS M. M., SELIGMAN A. M. Evidence for the specificity of esterase and lipase by the use of three chromogenic substrates. J Biol Chem. 1949 Nov;181(1):343–355. [PubMed] [Google Scholar]
- OYAMA V. I., EAGLE H. Measurement of cell growth in tissue culture with a phenol reagent (folin-ciocalteau). Proc Soc Exp Biol Med. 1956 Feb;91(2):305–307. doi: 10.3181/00379727-91-22245. [DOI] [PubMed] [Google Scholar]
- PATTLE R. E., THOMAS L. C. Lipoprotein composition of the film lining the lung. Nature. 1961 Mar 11;189:844–844. doi: 10.1038/189844a0. [DOI] [PubMed] [Google Scholar]
- POPIELA T., SZAFRAN H., SZAFRANZ THE ACTIVITY OF HUMAN GASTRIC LIPASE TOWARDS P-NITROPHENYL ESTERS. Clin Chim Acta. 1965 Mar;11:283–285. doi: 10.1016/0009-8981(65)90077-x. [DOI] [PubMed] [Google Scholar]
- Pilz W., Johann I. Ester spaltende Fermente der menschlichen Lunge. Hoppe Seylers Z Physiol Chem. 1967 Jan;348(1):73–83. [PubMed] [Google Scholar]
- Reiss O. K. Studies of lung metabolism. I. Isolation and properties of subcellular fractions from rabbit lung. J Cell Biol. 1966 Jul;30(1):45–57. doi: 10.1083/jcb.30.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SELIGMAN A. M., NACHLAS M. M. The colorimetric determination of lipase and esterase in human serum. J Clin Invest. 1950 Jan;29(1):31–36. doi: 10.1172/JCI102231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SELLINGER O. Z., DE BALBIAN VERSTER F. An esterase of rat cerebral cortex acting on o-nitrophenyl acetate: method of assay, properties, and intracellular distribution. Anal Biochem. 1962 Jun;3:479–488. doi: 10.1016/0003-2697(62)90081-7. [DOI] [PubMed] [Google Scholar]
- SZAFRAN H., SZAFRAN Z., POPIELA T. HYDROLYSIS OF AROMATIC ESTERS BY HUMAN DUODENAL CONTENTS. Clin Chim Acta. 1964 Feb;9:190–192. doi: 10.1016/0009-8981(64)90017-8. [DOI] [PubMed] [Google Scholar]
- Sorokin S P. A morphologic and cytochemical study on the great alveolar cell. J Histochem Cytochem. 1966 Dec;14(12):884–897. doi: 10.1177/14.12.884. [DOI] [PubMed] [Google Scholar]
- WILSON I. B. Mechanism of hydrolysis. II. New evidence for an acylated enzyme as intermediate. Biochim Biophys Acta. 1951 Nov;7(4):520–525. doi: 10.1016/0006-3002(51)90066-2. [DOI] [PubMed] [Google Scholar]