Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1968 Jul 1;38(1):151–157. doi: 10.1083/jcb.38.1.151

SYNTHESIS OF CHLOROPLAST DNA IN ISOLATED CHLOROPLASTS

N Steele Scott 1, Vinod C Shah 1, Robert M Smillie 1
PMCID: PMC2107466  PMID: 5675411

Abstract

Chloroplasts isolated from Euglena gracilis incorporated both tritiated thymidine 5'-triphosphate and tritiated deoxyadenosine 5'-triphosphate into an acid-stable fraction. The incorporation was dependent on the presence of all four deoxynucleoside triphosphates and was sensitive to treatment with deoxyribonuclease and actinomycin D. It was demonstrated that bacterial contamination could not account for the incorporation of label. Extraction of DNA from the chloroplasts and subsequent density gradient centrifugation of the DNA in CsCl2 showed that the incorporation was into chloroplast DNA (ρ = 1.686) of high molecular weight.

Full Text

The Full Text of this article is available as a PDF (427.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chiang K. S., Sueoka N. Replication of chloroplast DNA in Chlamydomonas reinhardi during vegetative cell cycle: its mode and regulation. Proc Natl Acad Sci U S A. 1967 May;57(5):1506–1513. doi: 10.1073/pnas.57.5.1506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cook J. R. The synthesis of cytoplasmic DNA in synchronized Euglena. J Cell Biol. 1966 May;29(2):369–373. doi: 10.1083/jcb.29.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. EISENSTADT J. M., BRAWERMAN G. THE PROTEIN-SYNTHESIZING SYSTEMS FROM THE CYTOPLASM AND THE CHLOROPLASTS OF EUGLENA GRACILIS. J Mol Biol. 1964 Dec;10:392–402. doi: 10.1016/s0022-2836(64)80060-7. [DOI] [PubMed] [Google Scholar]
  4. Green B. R., Gordon M. P. Replication of chloroplast DNA of tobacco. Science. 1966 May 20;152(3725):1071–1074. doi: 10.1126/science.152.3725.1071. [DOI] [PubMed] [Google Scholar]
  5. Haruna I., Spiegelman S. Specific template requirments of RNA replicases. Proc Natl Acad Sci U S A. 1965 Aug;54(2):579–587. doi: 10.1073/pnas.54.2.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Meselson M., Stahl F. W., Vinograd J. EQUILIBRIUM SEDIMENTATION OF MACROMOLECULES IN DENSITY GRADIENTS. Proc Natl Acad Sci U S A. 1957 Jul 15;43(7):581–588. doi: 10.1073/pnas.43.7.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Parsons P., Simpson M. V. Biosynthesis of DNA by isolated mitochondria: incorporation of thymidine triphosphate-2-C-14. Science. 1967 Jan 6;155(3758):91–93. doi: 10.1126/science.155.3758.91. [DOI] [PubMed] [Google Scholar]
  8. Scott N. S., Smillie R. M. Evidence for the direction of chloroplasts ribosomal RNA synthesis by chloroplast DNA. Biochem Biophys Res Commun. 1967 Aug 23;28(4):598–603. doi: 10.1016/0006-291x(67)90355-5. [DOI] [PubMed] [Google Scholar]
  9. Spencer D., Whitfeld P. R. DNA synthesis in isolated chloroplasts. Biochem Biophys Res Commun. 1967 Aug 23;28(4):538–542. doi: 10.1016/0006-291x(67)90347-6. [DOI] [PubMed] [Google Scholar]
  10. Tewari K. K., Wildman S. G. DNA polymerase in isolated tobacco chloroplasts and nature of the polymerized product. Proc Natl Acad Sci U S A. 1967 Aug;58(2):689–696. doi: 10.1073/pnas.58.2.689. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES