Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1968 Aug 1;38(2):377–391. doi: 10.1083/jcb.38.2.377

AUTOPHAGIC VACUOLES PRODUCED IN VITRO

I. Studies on Cultured Macrophages Exposed to Chloroquine

Martha E Fedorko 1, James G Hirsch 1, Zanvil A Cohn 1
PMCID: PMC2107491  PMID: 4874491

Abstract

Mouse macrophages exposed to 30 µg/ml of chloroquine in vitro develop autophagic vacuoles containing various cytoplasmic components and acid phosphatase. The early toxic vacuoles appear in the perinuclear region within 15 min; on electron microscopy, they show irregular shape, amorphous moderately dense content, apparent double membranes, and in some instances curved thin tubular extensions with a central, dark linear element. Cytoplasmic structures are probably transported into the vacuoles by invagination of the vacuolar membrane. After exposure to chloroquine for 1–4 hr, macrophages display large vacuoles containing degraded cytoplasmic structures, membranous whorls, and amorphous material. When chloroquine is removed by changing the culture medium after 4 hr, the cells survive and 24 hr later they exhibit no abnormality except for large cytoplasmic dense bodies packed with membrane lamellae. During recovery chloroquine disappears from the cells. 24 hr after exposure to chloroquine the macrophages have accumulated less hydrolases than control cells.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASHFORD T. P., PORTER K. R. Cytoplasmic components in hepatic cell lysosomes. J Cell Biol. 1962 Jan;12:198–202. doi: 10.1083/jcb.12.1.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BRANDES D., BUETOW D. E., BERTINI F., MALKOFF D. B. ROLE OF LYSOSOMES IN CELLULAR LYTIC PROCESSES. I. EFFECT OF CARBON STARVATION IN EUGLENA GRACILIS. Exp Mol Pathol. 1964 Dec;90:583–609. doi: 10.1016/0014-4800(64)90036-x. [DOI] [PubMed] [Google Scholar]
  3. COHN Z. A., BENSON B. THE DIFFERENTIATION OF MONONUCLEAR PHAGOCYTES. MORPHOLOGY, CYTOCHEMISTRY, AND BIOCHEMISTRY. J Exp Med. 1965 Jan 1;121:153–170. doi: 10.1084/jem.121.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. COHN Z. A., BENSON B. THE IN VITRO DIFFERENTIATION OF MONONUCLEAR PHAGOCYTES. II. THE INFLUENCE OF SERUM ON GRANULE FORMATION, HYDROLASE PRODUCTION, AND PINOCYTOSIS. J Exp Med. 1965 May 1;121:835–848. doi: 10.1084/jem.121.5.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CONFER D. B., STENGER R. J. THE EVOLUTION OF LYSOSOMES IN HYPOXIC LIVER PARENCHYMA AS SEEN WITH THE ELECTRON MICROSCOPE. Am J Pathol. 1964 Oct;45:533–546. [PMC free article] [PubMed] [Google Scholar]
  6. Cohn Z. A., Fedorko M. E., Hirsch J. G. The in vitro differentiation of mononuclear phagocytes. V. The formation of macrophage lysosomes. J Exp Med. 1966 Apr 1;123(4):757–766. doi: 10.1084/jem.123.4.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cohn Z. A., Hirsch J. G., Fedorko M. E. The in vitro differentiation of mononuclear phagocytes. IV. The ultrastructure of macrophage differentiation in the peritoneal cavity and in culture. J Exp Med. 1966 Apr 1;123(4):747–756. doi: 10.1084/jem.123.4.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. De Duve C., Wattiaux R. Functions of lysosomes. Annu Rev Physiol. 1966;28:435–492. doi: 10.1146/annurev.ph.28.030166.002251. [DOI] [PubMed] [Google Scholar]
  9. ELLIOTT A. M., BAK I. J. THE FATE OF MITOCHONDRIA DURING AGING IN TETRAHYMENA PYRIFORMIS. J Cell Biol. 1964 Jan;20:113–129. doi: 10.1083/jcb.20.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. ERICSSON J. L. ABSORPTION AND DECOMPOSITION OF HOMOLOGOUS HEMOGLOBIN IN RENAL PROXIMAL TUBULAR CELLS. Acta Pathol Microbiol Scand Suppl. 1964;168:SUPPL 168–168:1+. [PubMed] [Google Scholar]
  11. ERICSSON J. L., TRUMP B. F., WEIBEL J. ELECTRON MICROSCOPIC STUDIES OF THE PROXIMAL TUBULE OF THE RAT KIDNEY. II. CYTOSEGRESOMES AND CYTOSOMES: THEIR RELATIONSHIP TO EACH OTHER AND TO THE LYSOSOME CONCEPT. Lab Invest. 1965 Jul;14:1341–1365. [PubMed] [Google Scholar]
  12. Fedorko M. E. Effect of chloroquine on morphology of leukocytes and pancreatic exocrine cells from the rat. Lab Invest. 1968 Jan;18(1):27–37. [PubMed] [Google Scholar]
  13. Fedorko M. E., Hirsch J. G., Cohn Z. A. Autophagic vacuoles produced in vitro. II. Studies on the mechanism of formation of autophagic vacuoles produced by chloroquine. J Cell Biol. 1968 Aug;38(2):392–402. doi: 10.1083/jcb.38.2.392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fedorko M. Effect of chloroquine on morphology of cytoplasmic granules in maturing human leukocytes--an ultrastructural study. J Clin Invest. 1967 Dec;46(12):1932–1942. doi: 10.1172/JCI105683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Friend D. S., Farquhar M. G. Functions of coated vesicles during protein absorption in the rat vas deferens. J Cell Biol. 1967 Nov;35(2):357–376. doi: 10.1083/jcb.35.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. GADDONI G., CARRARO P. R., CAPITANI G. AZIONE DELLA CLOROCHINA SUI FIBROBLASTI COLTIVATI IN VITRO. 3. EFFETTI SULLA MORFOLOGIA CELLULARE. Arch Ital Dermatol Venereol Sessuol. 1964;33:397–414. [PubMed] [Google Scholar]
  17. HRUBAN Z., SWIFT H., WISSLER R. W. Analog-induced inclusions in pancreatic acinar cells. J Ultrastruct Res. 1962 Oct;7:273–285. doi: 10.1016/s0022-5320(62)90023-0. [DOI] [PubMed] [Google Scholar]
  18. Holtzman E., Novikoff A. B., Villaverde H. Lysosomes and GERL in normal and chromatolytic neurons of the rat ganglion nodosum. J Cell Biol. 1967 May;33(2):419–435. doi: 10.1083/jcb.33.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lane N. J., Novikoff A. B. Effects of arginine deprivation, ultraviolet radiation, and x-radiation on cultured KB cells. A cytochemical and ultrastructural study. J Cell Biol. 1965 Dec;27(3):603–620. doi: 10.1083/jcb.27.3.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. MILLER F., PALADE G. E. LYTIC ACTIVITIES IN RENAL PROTEIN ABSORPTION DROPLETS. AN ELECTRON MICROSCOPICAL CYTOCHEMICAL STUDY. J Cell Biol. 1964 Dec;23:519–552. doi: 10.1083/jcb.23.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. NOVIKOFF A. B., ESSNER E., QUINTANA N. GOLGI APPARATUS AND LYSOSOMES. Fed Proc. 1964 Sep-Oct;23:1010–1022. [PubMed] [Google Scholar]
  24. SWIFT H., HRUBAN Z. FOCAL DEGRADATION AS A BIOLOGICAL PROCESS. Fed Proc. 1964 Sep-Oct;23:1026–1037. [PubMed] [Google Scholar]
  25. TRUMP B. F., GOLDBLATT P. J., STOWELL R. E. An electron microscopic study of early cytoplasmic alterations in hepatic parenchymal cells of mouse liver during necrosis in vitro (autolysis). Lab Invest. 1962 Nov;11:986–1015. [PubMed] [Google Scholar]
  26. VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES