Abstract
The plasma membrane fraction of rat liver was isolated and incubated with labeled lysophosphatides in the presence of cofactors; the acylation of lysolecithin to lecithin by the fraction was compared to that of the rough and smooth microsomes. The purity of the isolated fractions was ascertained by enzyme markers and electron microscopy, and the maximal contamination of the plasma membrane fraction by microsomes did not exceed 20%. Under conditions at which the reaction was proportional to the amount of enzyme used, the plasma membrane had a specific activity similar to that of the smooth and rough microsomes. With doubly labeled lysolecithin (containing palmitic acid-14C and choline-3H) it was shown that the lecithin formed retained the same ratio of the two labels, which indicated that lysolecithin was converted to lecithin through an acylation reaction. The newly formed lecithin was shown to be bound to the plasma membrane fraction; this suggested that it is incorporated into the structure of the membrane itself.
Full Text
The Full Text of this article is available as a PDF (529.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
- COOPERSTEIN S. J., LAZAROW A. A microspectrophotometric method for the determination of cytochrome oxidase. J Biol Chem. 1951 Apr;189(2):665–670. [PubMed] [Google Scholar]
- Dallner G., Siekevitz P., Palade G. E. Biogenesis of endoplasmic reticulum membranes. I. Structural and chemical differentiation in developing rat hepatocyte. J Cell Biol. 1966 Jul;30(1):73–96. doi: 10.1083/jcb.30.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EMMELOT P., BOS C. J., BENEDETTI E. L., RUEMKE P. STUDIES ON PLASMA MEMBRANES. I. CHEMICAL COMPOSITION AND ENZYME CONTENT OF PLASMA MEMBRANES ISOLATED FROM RAT LIVER. Biochim Biophys Acta. 1964 Jul 15;90:126–145. doi: 10.1016/0304-4165(64)90125-4. [DOI] [PubMed] [Google Scholar]
- Eisenberg S., Stein Y., Stein O. The role of lysolecithin in phospholipid metabolism of human umbilical and dog carotid arteries. Biochim Biophys Acta. 1967 Apr 4;137(2):221–231. doi: 10.1016/0005-2760(67)90098-7. [DOI] [PubMed] [Google Scholar]
- Eisenberg S., Stein Y., Stein O. The role of placenta in lysolecithin metabolism in rats and mice. Biochim Biophys Acta. 1967 Feb 14;137(1):115–120. doi: 10.1016/0005-2760(67)90014-8. [DOI] [PubMed] [Google Scholar]
- Elsbach P., van den Berg J. W., van den Bosch H., van Deenen L. L. Metabolism of phospholipids by polymorphonuclear leukocytes. Biochim Biophys Acta. 1965 Oct 4;106(2):338–347. doi: 10.1016/0005-2760(65)90042-1. [DOI] [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- GOLDRICK B., HIRSCH J. A TECHNIQUE FOR QUANTITATIVE RECOVERY OF LIPIDS FROM CHROMATOPLATES. J Lipid Res. 1963 Oct;4:482–483. [PubMed] [Google Scholar]
- Higgins J. A., Green C. Properties of a lipase of rat-liver parenchymal cells. Biochim Biophys Acta. 1967 Oct 2;144(2):211–220. doi: 10.1016/0005-2760(67)90151-8. [DOI] [PubMed] [Google Scholar]
- JACOB S. T., BHARGAVA P. M. A new method for the preparation of liver cell suspensions. Exp Cell Res. 1962 Sep;27:453–467. doi: 10.1016/0014-4827(62)90011-3. [DOI] [PubMed] [Google Scholar]
- LANDS W. E. Metabolism of glycerolipids. 2. The enzymatic acylation of lysolecithin. J Biol Chem. 1960 Aug;235:2233–2237. [PubMed] [Google Scholar]
- LONG C., PENNY I. F. The structure of the naturally occurring phosphoglycerides. III. Action of moccasin-venom phospholipase A on ovolecithin and related substances. Biochem J. 1957 Feb;65(2):382–389. doi: 10.1042/bj0650382. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- MILLONIG G. A modified procedure for lead staining of thin sections. J Biophys Biochem Cytol. 1961 Dec;11:736–739. doi: 10.1083/jcb.11.3.736. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michell R. H., Harwood J. L., Coleman R., Hawthorne J. N. Characteristics of rat liver phosphatidylinositol kinase and its presence in the plasma membrane. Biochim Biophys Acta. 1967 Dec 5;144(3):649–658. doi: 10.1016/0005-2760(67)90053-7. [DOI] [PubMed] [Google Scholar]
- Omura T., Siekevitz P., Palade G. E. Turnover of constituents of the endoplasmic reticulum membranes of rat hepatocytes. J Biol Chem. 1967 May 25;242(10):2389–2396. [PubMed] [Google Scholar]
- Pande S. V., Mead J. F. Long chain fatty acid activation in subcellular preparations from rat liver. J Biol Chem. 1968 Jan 25;243(2):352–361. [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rachmilewitz D., Eisenberg S., Stein Y., Stein O. Phospholipases in arterial tissue. I. Sphingomyelin cholinephosphohydrolase activity in human, dog, guinea pig, rat and rabbit arteries. Biochim Biophys Acta. 1967 Dec 5;144(3):624–632. doi: 10.1016/0005-2760(67)90051-3. [DOI] [PubMed] [Google Scholar]
- Skipski V. P., Peterson R. F., Barclay M. Quantitative analysis of phospholipids by thin-layer chromatography. Biochem J. 1964 Feb;90(2):374–378. doi: 10.1042/bj0900374. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stein Y., Stein O. Metabolism of labeled lysolecithin, lysophosphatidyl ethanolamine and lecithin in the rat. Biochim Biophys Acta. 1966 Feb 1;116(1):95–107. doi: 10.1016/0005-2760(66)90095-6. [DOI] [PubMed] [Google Scholar]
- TZUR R., SHAPIRO B. DEPENDENCE OF MICROSOMAL LIPID SYNTHESIS ON ADDED PROTEIN. J Lipid Res. 1964 Oct;5:542–547. [PubMed] [Google Scholar]