Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1968 Oct 1;39(1):1–34. doi: 10.1083/jcb.39.1.1

ORGANIZATION AND ACTIVITY IN THE PRE- AND POSTOVULATORY FOLLICLE OF NECTURUS MACULOSUS

R G Kessel 1, W R Panje 1
PMCID: PMC2107508  PMID: 5692682

Abstract

The established follicle envelope of Necturus maculosus consists of a layer of follicle cells (granulosa) surrounding the developing oocyte, a layer of theca comprised of connective tissue cells, fibers, and matrix, and a layer of serosal cells. The changes in shape and fine structure of these layers during differentiation accompanying oogenesis are described. The cells and capillaries of the follicle envelope are engaged in an extensive pinocytotic activity, the details of which are described. We used cytochemical techniques to analyze the activity of the follicle envelope with respect to lipid accumulation and alkaline phosphatase activity. Radioautographic results indicate that cells of the follicle envelope are capable of incorporating tritium-labeled uridine and amino acids at certain times during oocyte growth. A comparative analysis was made of the soluble proteins in follicle envelopes isolated from immature oocytes and of those in follicle envelopes isolated from nearly mature oocytes and in postovulatory follicles. After the oocyte is ovulated, the cells of the follicle envelope are converted into a postovulatory follicle. The cells of the postovulatory follicle undergo further differentiation resulting in their becoming actively engaged in the formation of a secretion, the details of which are described at the electron microscope level. Analysis of the postovulatory follicle by thin-layer chromatography and cytochemistry demonstrated the presence of a wide variety of lipid substances and the possible presence of steroid. That the postovulatory follicle may be engaged in steroid biosynthesis is also suggested by studies involving the demonstration of 3 β-hydroxysteroid dehydrogenase activity with cytochemical techniques applied to frozen sections and to soluble proteins separated by gel electrophoresis.

Full Text

The Full Text of this article is available as a PDF (3.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSON E., BEAMS H. W. Cytological observations on the fine structure of the guinea pig ovary with special reference to the oogonium, primary oocyte and associated follicle cells. J Ultrastruct Res. 1960 Jun;3:432–446. doi: 10.1016/s0022-5320(60)90021-6. [DOI] [PubMed] [Google Scholar]
  2. BEYER K. F., SAMUELS L. T. Distribution of steroid-3beta-ol-dehydrogenase in cellular structures of the adrenal gland. J Biol Chem. 1956 Mar;219(1):69–76. [PubMed] [Google Scholar]
  3. BIER K. [Synthesis, intercellular transport, and analysis of ribonucleic acids in the ovum of the housefly Musca domestica]. J Cell Biol. 1963 Feb;16:436–440. doi: 10.1083/jcb.16.2.436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BROWN D. D., LITTNA E. RNA SYNTHESIS DURING THE DEVELOPMENT OF XENOPUS LAEVIS, THE SOUTH AFRICAN CLAWED TOAD. J Mol Biol. 1964 May;8:669–687. doi: 10.1016/s0022-2836(64)80116-9. [DOI] [PubMed] [Google Scholar]
  5. BROWN D. D., LITTNA E. VARIATIONS IN THE SYNTHESIS OF STABLE RNA'S DURING OOGENESIS AND DEVELOPMENT OF XENOPUS LAEVIS. J Mol Biol. 1964 May;8:688–695. doi: 10.1016/s0022-2836(64)80117-0. [DOI] [PubMed] [Google Scholar]
  6. Belt W. D., Sheridan M. N., Knouff R. A., Hartman F. A. Fine structural study of a possible mechanism of secretion by the interrenal cells of the brown pelican. Z Zellforsch Mikrosk Anat. 1965 Dec 30;68(6):864–873. doi: 10.1007/BF00343937. [DOI] [PubMed] [Google Scholar]
  7. Blanchette E. J. Ovarian steroid cells. II. The lutein cell. J Cell Biol. 1966 Dec;31(3):517–542. doi: 10.1083/jcb.31.3.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brindley D. N., Hübscher G. The intracellular distribution of the enzymes catalysing the biosynthesis of glycerides in the intestinal mucosa. Biochim Biophys Acta. 1965 Dec 2;106(3):495–509. doi: 10.1016/0005-2760(65)90066-4. [DOI] [PubMed] [Google Scholar]
  9. CALVIN H. I., VANDEWIELE R. L., LIEBERMAN S. EVIDENCE THAT STEROID SULFATES SERVE AS BIOSYNTHETIC INTERMEDIATES: IN VIVO CONVERSION OF PREGNENOLONE-SULFATE-S35 TO DEHYDROISOANDROSTERONE SULFATE-S35. Biochemistry. 1963 Jul-Aug;2:648–653. doi: 10.1021/bi00904a005. [DOI] [PubMed] [Google Scholar]
  10. CHIQUOINE A. D. The development of the zona pellucida of the mammalian ovum. Am J Anat. 1960 Mar;106:149–169. doi: 10.1002/aja.1001060207. [DOI] [PubMed] [Google Scholar]
  11. CHRISTENSEN A. K., FAWCETT D. W. The normal fine structure of opossum testicular interstitial cells. J Biophys Biochem Cytol. 1961 Mar;9:653–670. doi: 10.1083/jcb.9.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Christensen A. K., Fawcett D. W. The fine structure of testicular interstitial cells in mice. Am J Anat. 1966 Mar;118(2):551–571. doi: 10.1002/aja.1001180214. [DOI] [PubMed] [Google Scholar]
  13. DAVIDSON E. H., ALLFREY V. G., MIRSKY A. E. ON THE RNA SYNTHESIZED DURING THE LAMPBRUSH PHASE OF AMPHIBIAN OOEGENESIS. Proc Natl Acad Sci U S A. 1964 Aug;52:501–508. doi: 10.1073/pnas.52.2.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  15. DE DUVE C., WATTIAUX R., BAUDHUIN P. Distribution of enzymes between subcellular fractions in animal tissues. Adv Enzymol Relat Subj Biochem. 1962;24:291–358. doi: 10.1002/9780470124888.ch6. [DOI] [PubMed] [Google Scholar]
  16. DOLLANDER A. Ultrastructure de la région corticale de l'ovocyte et de l'oeuf fécondé symétrisé chez le Triton. C R Seances Soc Biol Fil. 1956 Sep 26;150(5):998–1001. [PubMed] [Google Scholar]
  17. Davidson E. H., Crippa M., Kramer F. R., Mirsky A. E. Genomic function during the lampbrush chromosome stage of amphibian oogenesis. Proc Natl Acad Sci U S A. 1966 Sep;56(3):856–863. doi: 10.1073/pnas.56.3.856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. ENDERS A. C., LYONS W. R. OBSERVATIONS ON THE FINE STRUCTURE OF LUTEIN CELLS. II. THE EFFECTS OF HYPOPHYSECTOMY AND MAMMOTROPHIC HORMONE IN THE RAT. J Cell Biol. 1964 Jul;22:127–141. doi: 10.1083/jcb.22.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. ENDERS A. C. Observations on the fine structure of lutein cells. J Cell Biol. 1962 Jan;12:101–113. doi: 10.1083/jcb.12.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  21. Gall J. G. Nuclear RNA of the salamander oocyte. Natl Cancer Inst Monogr. 1966 Dec;23:475–488. [PubMed] [Google Scholar]
  22. HALKERSTON I. D., EICHHORN J., HECHTER O. A requirement for reduced triphosphopyridine nucleotide for cholesterol side-chain cleavage by mitochondrial fractions of bovine adrenal cortex. J Biol Chem. 1961 Feb;236:374–380. [PubMed] [Google Scholar]
  23. HISAW F. L., Jr, HISAW F. L. Corpora lutea of elasmobranch fishes. Anat Rec. 1959 Dec;135:269–277. doi: 10.1002/ar.1091350405. [DOI] [PubMed] [Google Scholar]
  24. HOFMANN F. G. Steroid C-17 hydroxylation in guinea-pig-adrenal homogenates. Biochim Biophys Acta. 1960 Jan 29;37:566–567. doi: 10.1016/0006-3002(60)90530-8. [DOI] [PubMed] [Google Scholar]
  25. HOPE J., HUMPHRIES A. A., Jr, BOURNE G. H. ULTRASTRUCTURAL STUDIES ON DEVELOPING OOCYTES OF THE SALAMANDER TRITURUS VIRIDESCENS. I. THE RELATIONSHIP BETWEEN FOLLICLE CELLS AND DEVELOPING OOCYTES. J Ultrastruct Res. 1963 Oct;59:302–324. doi: 10.1016/s0022-5320(63)80009-x. [DOI] [PubMed] [Google Scholar]
  26. HOPE J., HUMPHRIES A. A., Jr, BOURNE G. H. ULTRASTRUCTURAL STUDIES ON DEVELOPING OOCYTES ON THE SALAMANDER TRITURUS VIRIDESCENS. II. THE FORMATION OF YOLK. J Ultrastruct Res. 1964 Jun;10:547–556. doi: 10.1016/s0022-5320(64)80028-9. [DOI] [PubMed] [Google Scholar]
  27. ISSELBACHER K. J. METABOLISM AND TRANSPORT OF LIPID BY INTESTINAL MUCOSA. Fed Proc. 1965 Jan-Feb;24:16–22. [PubMed] [Google Scholar]
  28. KARASAKI S. STUDIES ON AMPHIBIAN YOLK. 5. ELECTRON MICROSCOPIC OBSERVATIONS ON THE UTILIZATION OF YOLK PLATELETS DURING EMBRYOGENESIS. J Ultrastruct Res. 1963 Oct;59:225–247. doi: 10.1016/s0022-5320(63)80004-0. [DOI] [PubMed] [Google Scholar]
  29. KEMP N. E. Electron microscopy of growing oocytes of Rana pipiens. J Biophys Biochem Cytol. 1956 May 25;2(3):281–292. doi: 10.1083/jcb.2.3.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. LEVER J. D. Electron microscopic observations on the adrenal cortex. Am J Anat. 1955 Nov;97(3):409–429. doi: 10.1002/aja.1000970304. [DOI] [PubMed] [Google Scholar]
  31. LEVY H., DEANE H. W., RUBIN B. L. Visualization of steroid-3beta-o1-dehydrogenase activity in tissues of intact and hypophysectomized rats. Endocrinology. 1959 Dec;65:932–943. doi: 10.1210/endo-65-6-932. [DOI] [PubMed] [Google Scholar]
  32. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Long J. A., Jones A. L. The fine structure of the zona glomerulosa and the zona fasciculata of the adrenal cortex of the opossum. Am J Anat. 1967 May;120(3):463–487. doi: 10.1002/aja.1001200305. [DOI] [PubMed] [Google Scholar]
  34. Masui Y. Relative roles of the pituitary, follicle cells, and progesterone in the induction of oocyte maturation in Rana pipiens. J Exp Zool. 1967 Dec;166(3):365–375. doi: 10.1002/jez.1401660309. [DOI] [PubMed] [Google Scholar]
  35. Nandi J. Comparative endocrinology of steroid hormones in vertebrates. Am Zool. 1967 Feb;7(1):115–133. doi: 10.1093/icb/7.1.115. [DOI] [PubMed] [Google Scholar]
  36. Olson J. A. The biosynthesis of cholesterol. Ergeb Physiol. 1965;56:173–215. [PubMed] [Google Scholar]
  37. PALADE G. E. A study of fixation for electron microscopy. J Exp Med. 1952 Mar;95(3):285–298. doi: 10.1084/jem.95.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. PESONEN S., RAPOLA J. Observations on the metabolism of adrenal and gonadal steroids in Xenopus laevis and Bufo bufo. Gen Comp Endocrinol. 1962 Oct;2:425–432. doi: 10.1016/0016-6480(62)90039-4. [DOI] [PubMed] [Google Scholar]
  39. POPJAK G., CORNFORTH J. W. The biosynthesis of cholesterol. Adv Enzymol Relat Subj Biochem. 1960;22:281–335. doi: 10.1002/9780470122679.ch7. [DOI] [PubMed] [Google Scholar]
  40. REVEL J. P. ELECTRON MICROSCOPY OF GLYCOGEN. J Histochem Cytochem. 1964 Feb;12:104–114. doi: 10.1177/12.2.104. [DOI] [PubMed] [Google Scholar]
  41. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. RHODIN J. A. Fine structure of vascular walls in mammals with special reference to smooth muscle component. Physiol Rev Suppl. 1962 Jul;5:48–87. [PubMed] [Google Scholar]
  43. ROSS M. H., PAPPAS G. D., LANMAN J. T., LIND J. Electron microscope observations on the endoplasmic reticulum in the human fetal adrenal. J Biophys Biochem Cytol. 1958 Sep 25;4(5):659–661. doi: 10.1083/jcb.4.5.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. ROTH T. F., PORTER K. R. YOLK PROTEIN UPTAKE IN THE OOCYTE OF THE MOSQUITO AEDES AEGYPTI. L. J Cell Biol. 1964 Feb;20:313–332. doi: 10.1083/jcb.20.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. RYAN K. J., ENGEL L. L. Hydroxylation of steroids at carbon 21. J Biol Chem. 1957 Mar;225(1):103–114. [PubMed] [Google Scholar]
  46. SABATINI D. D., BENSCH K., BARRNETT R. J. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol. 1963 Apr;17:19–58. doi: 10.1083/jcb.17.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. SCHNEIDER W. C. INTRACELLULAR DISTRIBUTION OF ENZYMES. XIII. ENZYMATIC SYNTHESIS OF DEOXYCYTIDINE DIPHOSPHATE CHOLINE AND LECITHIN IN RAT LIVER. J Biol Chem. 1963 Nov;238:3572–3578. [PubMed] [Google Scholar]
  48. SHARMA D. C., FORCHIELLI E., DORFMAN R. I. Preparation and properties of a soluble steroid 11beta-hydroxylase from bovine adrenal cortex. J Biol Chem. 1962 May;237:1495–1499. [PubMed] [Google Scholar]
  49. SIRLIN J. L., JACOB J. Cell function in the ovary of Drosophila. II. Behaviour of RNA. Exp Cell Res. 1960 Aug;20:283–293. doi: 10.1016/0014-4827(60)90158-0. [DOI] [PubMed] [Google Scholar]
  50. WARTENBERG H., GUSEK W. [Electron microscopic research on the fine structure of the ovarian ovum and the follicular epithelium of amphibia]. Exp Cell Res. 1960 Mar;19:199–209. doi: 10.1016/0014-4827(60)90001-x. [DOI] [PubMed] [Google Scholar]
  51. WARTENBERG H. [Electron microscopic and histochemical studies on the oogenesis of amphibia egg cells]. Z Zellforsch Mikrosk Anat. 1962;58:427–486. [PubMed] [Google Scholar]
  52. WATSON M. L. Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol. 1958 Jul 25;4(4):475–478. doi: 10.1083/jcb.4.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. WATTENBERG L. W. Microscopic histochemical demonstration of steroid-3 beta-ol dehydrogenase in tissue sections. J Histochem Cytochem. 1958 Jul;6(4):225–232. doi: 10.1177/6.4.225. [DOI] [PubMed] [Google Scholar]
  54. WILLIAMSON J. R. ADIPOSE TISSUE. MORPHOLOGICAL CHANGES ASSOCIATED WITH LIPID MOBILIZATION. J Cell Biol. 1964 Jan;20:57–74. doi: 10.1083/jcb.20.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. ZIMMERMANN H., PEARSE A. G. Limitations in the histochemical demonstration of pyridine nucleotide-linked dehydrogenases (nothing dehydrogenase). J Histochem Cytochem. 1959 Jul;7(4):271–275. doi: 10.1177/7.4.271. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES