Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1968 Oct 1;39(1):95–111. doi: 10.1083/jcb.39.1.95

THE FINE STRUCTURE OF ACANTHAMOEBA CASTELLANII

I. The Trophozoite

Blair Bowers 1, Edward D Korn 1
PMCID: PMC2107510  PMID: 5678452

Abstract

The fine structure of the trophozoite of Acanthamoeba castellanii (Neff strain) has been studied. Locomotor pseudopods, spikelike "acanthopodia," and microprojections from the cell surface are all formed by hyaline cytoplasm, which excludes formed elements of the cell and contains a fine fibrillar material. Golgi complex, smooth and rough forms of endoplasmic reticulum, digestive vacuoles, mitochondria, and the water-expulsion vesicle (contractile vacuole) are described. A canicular system opening into the water-expulsion vesicle contains tubules about 600 A in diameter that are lined with a filamentous material. The tubules are continuous with unlined vesicles or ampullae of larger diameter. Centrioles were not observed, but cytoplasmic microtubules radiate from a dense material similar to centriolar satellites and are frequently centered in the Golgi complex. Cytoplasmic reserve materials include both lipid and glycogen, each of which amounts to about 10% of the dry weight.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSON E. OOCYTE DIFFERENTIATION AND VITELLOGENESIS IN THE ROACH PERIPLANETA AMERICANA. J Cell Biol. 1964 Jan;20:131–155. doi: 10.1083/jcb.20.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BESSIS M., BRETON-GORIUS J., THIERY J. P. Centriole, corps de Golgi et aster des leucocytes; étude au microscope électronique. Rev Hematol. 1958 Jul-Sep;13(3):363–386. [PubMed] [Google Scholar]
  3. Bainton D. F., Farquhar M. G. Origin of granules in polymorphonuclear leukocytes. Two types derived from opposite faces of the Golgi complex in developing granulocytes. J Cell Biol. 1966 Feb;28(2):277–301. doi: 10.1083/jcb.28.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bhowmick D. K. Electron microscopy of Trichamoeba villosa and amoeboid movement. Exp Cell Res. 1967 Mar;45(3):570–589. doi: 10.1016/0014-4827(67)90161-9. [DOI] [PubMed] [Google Scholar]
  5. DROCHMANS P. [Morphology of glycogen. Electron microscopic study of the negative stains of particulate glycogen]. J Ultrastruct Res. 1962 Apr;6:141–163. doi: 10.1016/s0022-5320(62)90050-3. [DOI] [PubMed] [Google Scholar]
  6. ELLIS R. A., ABEL J. H., Jr INTERCELLULAR CHANNELS IN THE SALT-SECRETING GLANDS OF MARINE TURTLES. Science. 1964 Jun 12;144(3624):1340–1342. doi: 10.1126/science.144.3624.1340. [DOI] [PubMed] [Google Scholar]
  7. Friend D. S., Farquhar M. G. Functions of coated vesicles during protein absorption in the rat vas deferens. J Cell Biol. 1967 Nov;35(2):357–376. doi: 10.1083/jcb.35.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. KLEIN R. L. Homeostatic mechanisms for cation regulation in Acanthamoeba sp. Exp Cell Res. 1961 Dec;25:571–584. doi: 10.1016/0014-4827(61)90191-4. [DOI] [PubMed] [Google Scholar]
  9. KOMNICK H., WOHLFARTH-BOTTERMANN K. E. DAS GRUNDPLASMA UND DIE PLASMAFILAMENTE DER AMOEBE CHAOS CHAOS NACH ENZYMATISCHER BEHANDLUNG DER ZELLMEMBRAN. Z Zellforsch Mikrosk Anat. 1965 May 6;66(3):434–456. [PubMed] [Google Scholar]
  10. KORN E. D. BIOSYNTHESIS OF UNSATURATED FATTY ACIDS IN ACANTHAMOEBA SP. J Biol Chem. 1964 Feb;239:396–400. [PubMed] [Google Scholar]
  11. KORN E. D. FATTY ACIDS OF ACANTHAMOEBA SP. J Biol Chem. 1963 Nov;238:3584–3587. [PubMed] [Google Scholar]
  12. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lu B. C. Meiosis in Coprinus lagopus: a comparative study with light and electron microscopy. J Cell Sci. 1967 Dec;2(4):529–536. doi: 10.1242/jcs.2.4.529. [DOI] [PubMed] [Google Scholar]
  14. MERCER E. H. An electron microscopic study of Amoeba proteus. Proc R Soc Lond B Biol Sci. 1959 Mar 17;150(939):216–232. doi: 10.1098/rspb.1959.0016. [DOI] [PubMed] [Google Scholar]
  15. Page F. C. Re-definition of the genus Acanthamoeba with descriptions of three species. J Protozool. 1967 Nov;14(4):709–724. doi: 10.1111/j.1550-7408.1967.tb02066.x. [DOI] [PubMed] [Google Scholar]
  16. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. ROSENBLUTH J., WISSIG S. L. THE DISTRIBUTION OF EXOGENOUS FERRITIN IN TOAD SPINAL GANGLIA AND THE MECHANISM OF ITS UPTAKE BY NEURONS. J Cell Biol. 1964 Nov;23:307–325. doi: 10.1083/jcb.23.2.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. ROTH T. F., PORTER K. R. YOLK PROTEIN UPTAKE IN THE OOCYTE OF THE MOSQUITO AEDES AEGYPTI. L. J Cell Biol. 1964 Feb;20:313–332. doi: 10.1083/jcb.20.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Robinow C. F., Marak J. A fiber apparatus in the nucleus of the yeast cell. J Cell Biol. 1966 Apr;29(1):129–151. doi: 10.1083/jcb.29.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. SCHUSTER F. AN ELECTRON MICROSCOPE STUDY OF THE AMOEBO-FLAGELLATE, NAEGLERIA GRUBERI (SCHARDINGER). I. THE AMOEBOID AND FLAGELLATE STAGES. J Protozool. 1963 Aug;10:297–313. doi: 10.1111/j.1550-7408.1963.tb01681.x. [DOI] [PubMed] [Google Scholar]
  21. Schmidt-Nielsen B., Schrauger C. R. Amoeba proteus: Studying the Contractile Vacuole by Micropuncture. Science. 1963 Feb 15;139(3555):606–607. doi: 10.1126/science.139.3555.606. [DOI] [PubMed] [Google Scholar]
  22. Stay B. Protein uptake in the oocytes of the cecropia moth. J Cell Biol. 1965 Jul;26(1):49–62. doi: 10.1083/jcb.26.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. THEG D. E. CYTOPLASMIC MICROTUBULES IN DIFFERENT ANIMAL CELLS. J Cell Biol. 1964 Nov;23:265–275. doi: 10.1083/jcb.23.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. VICKERMAN K. Patterns of cellular organisation in Limax amoebae. An electron microscope study. Exp Cell Res. 1962 Mar;26:497–519. doi: 10.1016/0014-4827(62)90155-6. [DOI] [PubMed] [Google Scholar]
  25. VICKERMAN K. Structural changes in mitochondria of Acanthamoeba at encystation. Nature. 1960 Oct 15;188:248–249. doi: 10.1038/188248a0. [DOI] [PubMed] [Google Scholar]
  26. Weisman R. A., Korn E. D. Phagocytosis of latex beads by Acanthamoeba. I. Biochemical properties. Biochemistry. 1967 Feb;6(2):485–497. doi: 10.1021/bi00854a017. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES