Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1968 Nov 1;39(2):286–298. doi: 10.1083/jcb.39.2.286

DIFFERENCES IN ENZYME CONTENT OF AZUROPHIL AND SPECIFIC GRANULES OF POLYMORPHONUCLEAR LEUKOCYTES

I. Histochemical Staining of Bone Marrow Smears

Dorothy Ford Bainton 1, Marilyn G Farquhar 1
PMCID: PMC2107529  PMID: 4878049

Abstract

Histochemical procedures for PMN granule enzymes were carried out on smears prepared from normal rabbit bone marrow, and the smears were examined by light microscopy. For each of the enzymes tested, azo dye and heavy metal techniques were utilized when possible. The distribution and intensity of each reaction were compared to the distribution of azurophil and specific granules in developing PMN. The distribution of peroxidase and six lysosomal enzymes (acid phosphatase, arylsulfatase, β-galactosidase, β-glucuronidase, esterase, and 5'-nucleotidase) corresponded to that of azurophil granules. Progranulocytes contained numerous reactive granules, and later stages contained only a few. The distribution of one enzyme, alkaline phosphatase, corresponded to that of specific granules. Reaction product first appeared in myelocytes, and later stages contained numerous reactive granules. The results of tests for lipase and thiolacetic acid esterase were negative at all developmental stages. Both types of granules stained for basic protein and arginine. It is concluded that azurophil and specific granules differ in their enzyme content. Moreover, a given enzyme appears to be restricted to one of the granules. The findings further indicate that azurophil granules are primary lysosomes, since they contain numerous lysosomal, hydrolytic enzymes, but the nature of specific granules is uncertain since, except for alkaline phosphatase, their contents remain unknown.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARONSON J., HEMPELMANN L. H., OKADA S. Preliminary studies on the histological demonstration of desoxyribonuclease II by adaptation of the Gomori acid phosphatase method. J Histochem Cytochem. 1958 Jul;6(4):255–259. doi: 10.1177/6.4.255. [DOI] [PubMed] [Google Scholar]
  2. AUSTIN J. H., BISCHEL M. A histochemical method for sulfatase activity in hemic cells and organ imprints. Blood. 1961 Feb;17:216–224. [PubMed] [Google Scholar]
  3. Alfert M., Geschwind I. I. A Selective Staining Method for the Basic Proteins of Cell Nuclei. Proc Natl Acad Sci U S A. 1953 Oct;39(10):991–999. doi: 10.1073/pnas.39.10.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bainton D. F., Farquhar M. G. Differences in enzyme content of azurophil and specific granules of polymorphonuclear leukocytes. II. Cytochemistry and electron microscopy of bone marrow cells. J Cell Biol. 1968 Nov;39(2):299–317. doi: 10.1083/jcb.39.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bainton D. F., Farquhar M. G. Origin of granules in polymorphonuclear leukocytes. Two types derived from opposite faces of the Golgi complex in developing granulocytes. J Cell Biol. 1966 Feb;28(2):277–301. doi: 10.1083/jcb.28.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bell M., Barrnett R. J. The use of thiol-substituted carboxylic acids as histochemical substrates. J Histochem Cytochem. 1965 Nov-Dec;13(8):611–628. doi: 10.1177/13.8.611. [DOI] [PubMed] [Google Scholar]
  7. COHN Z. A., HIRSCH J. G. The isolation and properties of the specific cytoplasmic granules of rabbit polymorphonuclear leucocytes. J Exp Med. 1960 Dec 1;112:983–1004. doi: 10.1084/jem.112.6.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. COHN Z. A. The fate of bacteria within phagocytic cells. I. The degradation of isotopically labeled bacteria by polymorphonuclear leucocytes and macrophages. J Exp Med. 1963 Jan 1;117:27–42. doi: 10.1084/jem.117.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DANNENBERG A. M., Jr, BENNETT W. E. HYDROLYTIC ENZYMES OF RABBIT MONONUCLEAR EXUDATE CELLS. I. QUANTITATIVE ASSAY AND PROPERTIES OF CERTAIN PROTEASES, NON-SPECIFIC ESTERASES, AND LIPASES OF MONONUCLEAR AND POLYMORPHONUCLEAR CELLS AND ERYTHROCYTES. J Cell Biol. 1964 Apr;21:1–13. doi: 10.1083/jcb.21.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DEITCH A. D. An improved Sakaguchi reaction for microspectrophotometric use. J Histochem Cytochem. 1961 Sep;9:477–483. doi: 10.1177/9.5.477. [DOI] [PubMed] [Google Scholar]
  11. Douglas S. D., Spicer S. S., Bartels P. H. Microspectrophotometric analysis of basic protein rich sites stained with Biebrich scarlet. J Histochem Cytochem. 1966 Apr;14(4):352–360. doi: 10.1177/14.4.352. [DOI] [PubMed] [Google Scholar]
  12. ELSBACH P., RIZACK M. A. ACID LIPASE AND PHOSPHOLIPASE ACTIVITY IN HOMOGENATES OF RABBIT POLYMORPHONUCLEAR LEUKOCYTES. Am J Physiol. 1963 Dec;205:1154–1158. doi: 10.1152/ajplegacy.1963.205.6.1154. [DOI] [PubMed] [Google Scholar]
  13. Fishman W. H., DeLellis R. Rapid method for localizing beta-glucuronidase in populations of human leucocytes and of mouse Ehrlich carcinoma cells. Nature. 1966 Oct 15;212(5059):312–314. doi: 10.1038/212312b0. [DOI] [PubMed] [Google Scholar]
  14. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  15. HAYASHI M., NAKAJIMA Y., FISHMAN W. H. THE CYTOLOGIC DEMONSTRATION OF BETA-GLUCURONIDASE EMPLOYING NAPHTHOL AS-BI GLUCURONIDE AND HEXAZONIUM PARAROSANILIN; A PRELIMINARY REPORT. J Histochem Cytochem. 1964 Apr;12:293–297. doi: 10.1177/12.4.293. [DOI] [PubMed] [Google Scholar]
  16. HIRSCHHORN R., WEISSMANN G. ISOLATION AND PROPERTIES OF HUMAN LEUKOCYTE LYSOSOMES IN VITRO. Proc Soc Exp Biol Med. 1965 May;119:36–39. doi: 10.3181/00379727-119-30091. [DOI] [PubMed] [Google Scholar]
  17. HOLT S. J. The value of fundamental studies of staining reactions in enzyme histochemistry, with reference to indoxyl methods for esterases. J Histochem Cytochem. 1956 Nov;4(6):541–554. doi: 10.1177/4.6.541. [DOI] [PubMed] [Google Scholar]
  18. HORN R. G., SPICER S. S. SULFATED MUCOPOLYSACCHARIDE AND BASIC PROTEIN IN CERTAIN GRANULES OF RABBIT LEUKOCYTES. Lab Invest. 1964 Jan;13:1–15. [PubMed] [Google Scholar]
  19. Hardonk M. J. 5'-nucleotidase. I. Distribution of 5'-nucleotidase in tissues of rat and mouse. Histochemie. 1968;12(1):1–17. doi: 10.1007/BF00306343. [DOI] [PubMed] [Google Scholar]
  20. Hopsu-Havu V. K., Arstila A. U., Helminen H. J., Kalimo H. O. Improvements in the method for the electron microscopic localization of arylsulphatase activity. Histochemie. 1967;8(1):54–64. doi: 10.1007/BF00279874. [DOI] [PubMed] [Google Scholar]
  21. Hugon J., Borgers M. A direct lead method for the electron microscopic visualization of alkaline phosphatase activity. J Histochem Cytochem. 1966 May;14(5):429–431. doi: 10.1177/14.5.429. [DOI] [PubMed] [Google Scholar]
  22. Janigan D. T. The effects of aldehyde fixation on acid phosphatase activity in tissue blocks. J Histochem Cytochem. 1965 Jul-Aug;13(6):476–483. doi: 10.1177/13.6.476. [DOI] [PubMed] [Google Scholar]
  23. KAPLOW L. S. A histochemical procedure for localizing and evaluating leukocyte alkaline phosphatase activity in smears of blood and marrow. Blood. 1955 Oct;10(10):1023–1029. [PubMed] [Google Scholar]
  24. KAPLOW L. S., BURSTONE M. S. CYTOCHEMICAL DEMONSTRATION OF ACID PHOSPHATASE IN HEMATOPOIETIC CELLS IN HEALTH AND IN VARIOUS HEMATOLOGICAL DISORDERS USING AZO DYE TECHNIQUES. J Histochem Cytochem. 1964 Nov;12:805–811. doi: 10.1177/12.11.805. [DOI] [PubMed] [Google Scholar]
  25. SABATINI D. D., BENSCH K., BARRNETT R. J. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol. 1963 Apr;17:19–58. doi: 10.1083/jcb.17.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. SPITZNAGEL J. K., CHI H. Y. CATIONIC PROTEINS AND ANTIBACTERIAL PROPERTIES OF INFECTED TISSUES AND LEUKOCYTES. Am J Pathol. 1963 Oct;43:697–711. [PMC free article] [PubMed] [Google Scholar]
  27. SWENDSEID M. E., WRIGHT P. D., BETHELL F. H. Variations in nucleotidase activity of leukocytes; studies with leukemia patients. J Lab Clin Med. 1952 Oct;40(4):515–518. [PubMed] [Google Scholar]
  28. Schultz J., Corlin R., Oddi F., Kaminker K., Jones W. Myeloperoxidase of the leucocyte of normal human blood. 3. Isolation of the peroxidase granule. Arch Biochem Biophys. 1965 Jul;111(1):73–79. doi: 10.1016/0003-9861(65)90324-3. [DOI] [PubMed] [Google Scholar]
  29. VORBRODT A. Histochemical studies on the intracellular localization of acid deoxyribonuclease. J Histochem Cytochem. 1961 Nov;9:647–655. doi: 10.1177/9.6.647. [DOI] [PubMed] [Google Scholar]
  30. WACHSTEIN M. Histochemistry of leukocytes. Ann N Y Acad Sci. 1955 Mar 24;59(5):1052–1065. doi: 10.1111/j.1749-6632.1955.tb46001.x. [DOI] [PubMed] [Google Scholar]
  31. WACHSTEIN M., MEISEL E. DEMONSTRATION OF PEROXIDASE ACTIVITY IN TISSUE SECTIONS. J Histochem Cytochem. 1964 Jul;12:538–544. doi: 10.1177/12.7.538. [DOI] [PubMed] [Google Scholar]
  32. WACHSTEIN M., MEISEL E., FALCON C. Histochemistry of thiolacetic acid esterase: a comparison with nonspecific esterase with special regard to the effect of fixatives and inhibitors on intracellular localization. J Histochem Cytochem. 1961 May;9:325–339. doi: 10.1177/9.3.325. [DOI] [PubMed] [Google Scholar]
  33. WACHSTEIN M., MEISEL E. Histochemistry of hepatic phosphatases of a physiologic pH; with special reference to the demonstration of bile canaliculi. Am J Clin Pathol. 1957 Jan;27(1):13–23. doi: 10.1093/ajcp/27.1.13. [DOI] [PubMed] [Google Scholar]
  34. Wetzel B. K., Spicer S. S., Horn R. G. Fine structural localization of acid and alkaline phosphatases in cells of rabbit blood and bone marrow. J Histochem Cytochem. 1967 Jun;15(6):311–334. doi: 10.1177/15.6.311. [DOI] [PubMed] [Google Scholar]
  35. ZEYA H. I., SPITZNAGEL J. K. ANTIBACTERIAL AND ENZYMIC BASIC PROTEINS FROM LEUKOCYTE LYSOSOMES: SEPARATION AND IDENTIFICATION. Science. 1963 Nov 22;142(3595):1085–1087. doi: 10.1126/science.142.3595.1085. [DOI] [PubMed] [Google Scholar]
  36. Zeya H. I., Spitznagel J. K. Arginine-rich proteins of polymorphonuclear leukocyte lysosomes. Antimicrobial specificity and biochemical heterogeneity. J Exp Med. 1968 May 1;127(5):927–941. doi: 10.1084/jem.127.5.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zeya H. I., Spitznagel J. K. Cationic proteins of polymorphonuclear leukocyte lysosomes. I. Resolution of antibacterial and enzymatic activities. J Bacteriol. 1966 Feb;91(2):750–754. doi: 10.1128/jb.91.2.750-754.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Zeya H. I., Spitznagel J. K. Cationic proteins of polymorphonuclear leukocyte lysosomes. II. Composition, properties, and mechanism of antibacterial action. J Bacteriol. 1966 Feb;91(2):755–762. doi: 10.1128/jb.91.2.755-762.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zeya H. I., Spitznagel J. K., Schwab J. H. Antibacterial action of PMN lysosomal cationic proteins resolved by density gradient electrophoresis. Proc Soc Exp Biol Med. 1966 Jan;121(1):250–253. doi: 10.3181/00379727-121-30749. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES