Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1969 Jul 1;42(1):262–271. doi: 10.1083/jcb.42.1.262

CHOLESTEROL REQUIREMENT OF PRIMARY DIPLOID HUMAN FIBROBLASTS

Richard Holmes 1, Judy Helms 1, Gretchen Mercer 1
PMCID: PMC2107562  PMID: 5786984

Abstract

Primary cultures of fibroblast-like cells were obtained from skin and articular cartilage of human donors in the age bracket of 1 to 15 years. For growth these cultures required 1 mg/liter of cholesterol added to Medium A2 plus acetyl choline, Na pyruvate, and D-galactosamine HCl (APG) containing 10% lipoprotein-free human serum. Established cell lines did not require cholesterol for growth. Eagle's medium could be used in place of Medium A2 plus APG with the same results. Desmosterol could replace cholesterol but lansterol or 7 dehydrocholesterol could not. Other cholesterol precursors were tested and found to be inactive. With the proviso that cholesterol precursors entered the cell and had to be converted to cholesterol to function, it was concluded that the particular primaries studied lacked a functional enzyme system to reduce the double bond at carbon 7.

Full Text

The Full Text of this article is available as a PDF (721.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAILEY J. M. LIPID METABOLISM IN CULTURED CELLS. IV. SERUM ALPHA GLOBULINS AND CELLULAR CHOLESTEROL EXCHANGE. Exp Cell Res. 1965 Jan;37:175–182. doi: 10.1016/0014-4827(65)90168-0. [DOI] [PubMed] [Google Scholar]
  2. CORNWELL D. G., KRUGER F. A. Molecular complexes in the isolation and characterization of plasma lipoproteins. J Lipid Res. 1961 Apr;2:110–134. [PubMed] [Google Scholar]
  3. Dempsey M. E. Pathways of enzymic synthesis and conversion to cholesterol of delta-5,7,24-cholestatrien-3 beta-ol and other naturally occurring sterols. J Biol Chem. 1965 Nov;240(11):4176–4188. [PubMed] [Google Scholar]
  4. EAGLE H. The specific amino acid requirements of a human carcinoma cell (Stain HeLa) in tissue culture. J Exp Med. 1955 Jul 1;102(1):37–48. doi: 10.1084/jem.102.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. EVANS V. J., BRYANT J. C., KERR H. A., SCHILLING E. L. CHEMICALLY DEFINED MEDIA FOR CULTIVATION OF LONG-TERM CELL STRAINS FROM FOUR MAMMALIAN SPECIES. Exp Cell Res. 1964 Dec;36:439–474. doi: 10.1016/0014-4827(64)90302-7. [DOI] [PubMed] [Google Scholar]
  6. FOLCH J., ASCOLI I., LEES M., MEATH J. A., LeBARON N. Preparation of lipide extracts from brain tissue. J Biol Chem. 1951 Aug;191(2):833–841. [PubMed] [Google Scholar]
  7. Geyer R. P. Uptake and retention of fatty acids by tissue culture cells. Wistar Inst Symp Monogr. 1967;6:33–47. [PubMed] [Google Scholar]
  8. HAM R. G. CLONAL GROWTH OF MAMMALIAN CELLS IN A CHEMICALLY DEFINED, SYNTHETIC MEDIUM. Proc Natl Acad Sci U S A. 1965 Feb;53:288–293. doi: 10.1073/pnas.53.2.288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HAYFLICK L. THE LIMITED IN VITRO LIFETIME OF HUMAN DIPLOID CELL STRAINS. Exp Cell Res. 1965 Mar;37:614–636. doi: 10.1016/0014-4827(65)90211-9. [DOI] [PubMed] [Google Scholar]
  10. HOLMES R., WOLFE S. W. Serum fractionation and the effects of bovine serum fractions on human cells grown in a chemically defined medium. J Biophys Biochem Cytol. 1961 Jul;10:389–401. doi: 10.1083/jcb.10.3.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holmes R. Discontinuous acrylamide-gel plate electrophoresis. Biochim Biophys Acta. 1967 Jan 18;133(1):174–177. doi: 10.1016/0005-2795(67)90053-0. [DOI] [PubMed] [Google Scholar]
  12. Holmes R. Proteins of altered electrophoretic mobility found in human sera after potassium bromide treatment. Biochim Biophys Acta. 1969 Feb 4;175(1):209–211. doi: 10.1016/0005-2795(69)90160-3. [DOI] [PubMed] [Google Scholar]
  13. Ling C. T., Gey G. O., Richters V. Chemically characterized concentrated Corodies for continuous cell culture (the 7C's culture media). Exp Cell Res. 1968 Oct;52(2):469–489. doi: 10.1016/0014-4827(68)90489-8. [DOI] [PubMed] [Google Scholar]
  14. Mackenzie C. G., Mackenzie J. B., Reiss O. K. Increase in cell lipid and cytoplasmic particles in mammalian cells cultured at reduced pH. J Lipid Res. 1967 Nov;8(6):642–645. [PubMed] [Google Scholar]
  15. OYAMA V. I., EAGLE H. Measurement of cell growth in tissue culture with a phenol reagent (folin-ciocalteau). Proc Soc Exp Biol Med. 1956 Feb;91(2):305–307. doi: 10.3181/00379727-91-22245. [DOI] [PubMed] [Google Scholar]
  16. Pié A., Giner A. Solvents for thin layer chromatography of blood serum lipids. Nature. 1966 Oct 22;212(5060):402–403. doi: 10.1038/212402a0. [DOI] [PubMed] [Google Scholar]
  17. Rothblat G. H., Kritchevsky D. The metabolism of free and esterified cholesterol in tissue culture cells: a review. Exp Mol Pathol. 1968 Jun;8(3):314–329. doi: 10.1016/s0014-4800(68)80003-6. [DOI] [PubMed] [Google Scholar]
  18. SCANU A., LEWIS L. A., BUMPUS F. M. Separation and characterization of the protein moiety of human alpha1-lipoprotein. Arch Biochem Biophys. 1958 Apr;74(2):390–397. doi: 10.1016/0003-9861(58)90009-2. [DOI] [PubMed] [Google Scholar]
  19. SPERRY W. M., BRAND F. C. The determination of total lipides in blood serum. J Biol Chem. 1955 Mar;213(1):69–76. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES