Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1969 Jul 1;42(1):272–283. doi: 10.1083/jcb.42.1.272

RIBOSOME PRECURSOR PARTICLES IN NUCLEOLI

Ming C Liau 1, Robert P Perry 1
PMCID: PMC2107574  PMID: 5815062

Abstract

Ribonucleoprotein (RNP) particles containing the precursors of ribosomal RNA were extracted from L cell nucleoli and analyzed under conditions comparable to those used in the characterization of cytoplasmic ribosomes. Using nucleoli from cells suitably labeled with 3H-uridine, we detected three basic RNP components, sedimenting at approximately 62S, 78S, and 110S in sucrose gradients containing magnesium. A fourth particle, sedimenting at about 95S, appears to be a dimer of the 62S and 78S components. When centrifuged in gradients containing EDTA, the 62S, 78S, and 110S particles sediment at about 55S, 65S, and 80S, respectively. RNA was extracted from RNP particles which were prepared by two cycles of zonal centrifugation. The 62S particles yielded 32S RNA and a detectable amount of 28S RNA, the 78S structures, 32S RNA and possibly some 36S RNA, and the 110S particles, a mixture of 45S, 36S, and 32S RNA's. When cells were pulsed briefly and further incubated in the presence of actinomycin D, there was a gradual shift of radioactivity from heavier to lighter particles. This observation is consistent with the scheme of maturation: 110S → 78S → 62S. The principal buoyant densities in cesium chloride of the 110S, 78S, and 62S particles are 1.465, 1.490, and 1.545, respectively. These densities are all significantly lower than 1.570, which is characteristic of the mature large subunit of cytoplasmic ribosomes, suggesting that the precursor particles have a relatively higher ratio of protein to RNA, and that ribosome maturation involves, in addition to decrease in the size of the RNA molecules, a progressive decrease in the proportion of associated protein.

Full Text

The Full Text of this article is available as a PDF (706.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CLARK M. F., MATTHEWS R. E., RALPH R. K. RIBOSOMES AND POLYRIBOSOMES IN BRASSICA PEKINENSIS. Biochim Biophys Acta. 1964 Oct 16;91:289–304. doi: 10.1016/0926-6550(64)90253-1. [DOI] [PubMed] [Google Scholar]
  2. Infante A. A., Nemer M. Heterogeneous ribonucleoprotein particles in the cytoplasm of sea urchin embryos. J Mol Biol. 1968 Mar 28;32(3):543–565. doi: 10.1016/0022-2836(68)90342-2. [DOI] [PubMed] [Google Scholar]
  3. Izawa M., Kawashima K. RNA synthesis in the nucleoli of mouse ascites tumor cells in relation to nucleolar components. Biochim Biophys Acta. 1968 Jan 29;155(1):51–62. doi: 10.1016/0005-2787(68)90334-1. [DOI] [PubMed] [Google Scholar]
  4. LIAU M. C., HNILICA L. S., HURLBERT R. B. REGULATION OF RNA SYNTHESIS IN ISOLATED NUCLEOLI BY HISTONES AND NUCLEOLAR PROTEINS. Proc Natl Acad Sci U S A. 1965 Mar;53:626–632. doi: 10.1073/pnas.53.3.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Liau M. C., Craig N. C., Perry R. P. The production of ribosomal RNA from high molecular weight precursors. I. Factors which influence the ability of isolated nucleoili to process 45-S RNA. Biochim Biophys Acta. 1968 Nov 20;169(1):196–205. doi: 10.1016/0005-2787(68)90020-8. [DOI] [PubMed] [Google Scholar]
  6. Penman S., Smith I., Holtzman E., Greenberg H. RNA metabolism in the HeLa cell nucleus and nucleolus. Natl Cancer Inst Monogr. 1966 Dec;23:489–512. [PubMed] [Google Scholar]
  7. Perry R. P., Kelley D. E. Buoyant densities of cytoplasmic ribonucleoprotein particles of mammalian cells: distinctive character of ribosome subunits and the rapidly labeled components. J Mol Biol. 1966 Apr;16(2):255–268. doi: 10.1016/s0022-2836(66)80171-7. [DOI] [PubMed] [Google Scholar]
  8. Perry R. P., Kelley D. E. Evidence for specific association of protein with newly formed ribosomal subunits. Biochem Biophys Res Commun. 1966 Aug 12;24(3):459–465. doi: 10.1016/0006-291x(66)90183-5. [DOI] [PubMed] [Google Scholar]
  9. Perry R. P. The nucleolus and the synthesis of ribosomes. Natl Cancer Inst Monogr. 1965 Dec;18:325–340. [PubMed] [Google Scholar]
  10. Rogers M. E. Ribonucleoprotein particles in the amphibian oocyte nucleus. Possible intermediates in ribosome synthesis. J Cell Biol. 1968 Mar;36(3):421–432. doi: 10.1083/jcb.36.3.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Tamaoki T., Mueller G. C. The effects of actinomycin D and puromycin on the formation of ribosomes in HeLa cells. Biochim Biophys Acta. 1965 Sep 6;108(1):73–80. doi: 10.1016/0005-2787(65)90109-7. [DOI] [PubMed] [Google Scholar]
  12. Tamaoki T. The particulate fraction containing 45 s RNA in L cell nuclei. J Mol Biol. 1966 Feb;15(2):624–639. doi: 10.1016/s0022-2836(66)80132-8. [DOI] [PubMed] [Google Scholar]
  13. Vesco C., Penman S. The fractionation of nuclei and the integrity of purified nucleoli in HeLa cells. Biochim Biophys Acta. 1968 Nov 20;169(1):188–195. doi: 10.1016/0005-2787(68)90019-1. [DOI] [PubMed] [Google Scholar]
  14. Warner J. R., Soeiro R. Nascent ribosomes from HeLa cells. Proc Natl Acad Sci U S A. 1967 Nov;58(5):1984–1990. doi: 10.1073/pnas.58.5.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Weinberg R. A., Loening U., Willems M., Penman S. Acrylamide gel electrophoresis of HeLa cell nucleolar RNA. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1088–1095. doi: 10.1073/pnas.58.3.1088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Yoshikawa-Fukada M. The intermediate state of ribosome formation in animal cells in culture. Biochim Biophys Acta. 1967;145(3):651–663. doi: 10.1016/0005-2787(67)90124-4. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES