Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1969 Jul 1;42(1):92–112. doi: 10.1083/jcb.42.1.92

CORRELATED MORPHOMETRIC AND BIOCHEMICAL STUDIES ON THE LIVER CELL

II. Effects of Phenobarbital on Rat Hepatocytes

Willy Stäubli 1, Robert Hess 1, Ewald R Weibel 1
PMCID: PMC2107585  PMID: 4306789

Abstract

The changes occurring in rat hepatocytes during a 5 day period of treatment with phenobarbital were determined by morphometric and biochemical methods, particular attention being paid to the endoplasmic reticulum. The hepatocytic cytoplasm played an overwhelming part in the liver hypertrophy, while the hepatocytic nuclei contributed to only a moderate extent. The endoplasmic reticulum accounted for more than half of the increase in cytoplasmic volume. The increase in the volume and number of hepatocytic nuclei in the course of phenobarbital treatment was associated with changes in the ploidy pattern. Until the 2nd day of treatment both the rough-surfaced endoplasmic reticulum (RER) and the smooth-surfaced endoplasmic reticulum (SER) participated in the increase in volume and surface of the whole endoplasmic reticulum (ER). Subsequently, the values for RER fell again to control levels, whereas those for SER continued to increase, with the result that by the 5th day of treatment the SER constituted the dominant cytoplasmic element. The specific volume of mitochondria and microbodies (peroxisomes) remained constant throughout the duration of the experiment, while that of the dense bodies increased. The specific number of mitochondria and microbodies displayed a significant increase, associated with a decrease in their mean volume. The phenobarbital-induced increase in the phospholipid and cytochrome P-450 content of the microsomes, as well as in the activities of microsomal reduced nicotinamide-adenine dinucleotide phosphate-cytochrome c reductase and N-demethylase, was correlated with the morphometric data on the endoplasmic reticulum.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALFERT M., GESCHWIND I. I. The development of polysomaty in rat liver. Exp Cell Res. 1958 Aug;15(1):230–232. doi: 10.1016/0014-4827(58)90079-x. [DOI] [PubMed] [Google Scholar]
  2. Adamson R. H., Dixon R. L., Francis F. L., Rall D. P. Comparative biochemistry of drug metabolism by azo and nitro reductase. Proc Natl Acad Sci U S A. 1965 Nov;54(5):1386–1391. doi: 10.1073/pnas.54.5.1386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alvares A. P., Schilling G., Levin W., Kuntzman R. Alteration of the microsomal hemoprotein by 3-methylcholanthrene: effects of ethionine and actinomycin D. J Pharmacol Exp Ther. 1968 Oct;163(2):417–424. [PubMed] [Google Scholar]
  4. Barka T., Popper H. Liver enlargement and drug toxicity. Medicine (Baltimore) 1967 Mar;46(2):103–117. doi: 10.1097/00005792-196703000-00005. [DOI] [PubMed] [Google Scholar]
  5. Bruni C., Porter K. R. The Fine Structure of the Parenchymal Cell of the Normal Rat Liver: I. General Observations. Am J Pathol. 1965 May;46(5):691–755. [PMC free article] [PubMed] [Google Scholar]
  6. Burger P. C., Herdson P. B. Phenobarbital-induced fine structural changes in rat liver. Am J Pathol. 1966 May;48(5):793–809. [PMC free article] [PubMed] [Google Scholar]
  7. CONNEY A. H., DAVISON C., GASTEL R., BURNS J. J. Adaptive increases in drug-metabolizing enzymes induced by phenobarbital and other drugs. J Pharmacol Exp Ther. 1960 Sep;130:1–8. [PubMed] [Google Scholar]
  8. CONNEY A. H., GILMAN A. G. PUROMYCIN INHIBITION OF ENZYME INDUCTION BY 3-METHYLCHOLANTHRENE AND PHENOBARBITAL. J Biol Chem. 1963 Nov;238:3682–3685. [PubMed] [Google Scholar]
  9. COOPER D. Y., ESTABROOK R. W., ROSENTHAL O. The stoichiometry of C21 hydroxylation of steroids by adrenocortical microsomes. J Biol Chem. 1963 Apr;238:1320–1323. [PubMed] [Google Scholar]
  10. Creaven P. J., Davies W. H., Williams R. T. Dealkylation of alkoxybiphenyls by trout and frog liver preparations. Life Sci. 1967 Jan 1;6(1):105–111. doi: 10.1016/0024-3205(67)90367-0. [DOI] [PubMed] [Google Scholar]
  11. Dallner G., Siekevitz P., Palade G. E. Biogenesis of endoplasmic reticulum membranes. I. Structural and chemical differentiation in developing rat hepatocyte. J Cell Biol. 1966 Jul;30(1):73–96. doi: 10.1083/jcb.30.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dallner G., Siekevitz P., Palade G. E. Biogenesis of endoplasmic reticulum membranes. II. Synthesis of constitutive microsomal enzymes in developing rat hepatocyte. J Cell Biol. 1966 Jul;30(1):97–117. doi: 10.1083/jcb.30.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dallner G., Siekevitz P., Palade G. E. Phospholipids in hepatic microsomal membranes during development. Biochem Biophys Res Commun. 1965 Jul 12;20(2):142–148. doi: 10.1016/0006-291x(65)90337-2. [DOI] [PubMed] [Google Scholar]
  14. Epstein C. J. Cell size, nuclear content, and the development of polyploidy in the Mammalian liver. Proc Natl Acad Sci U S A. 1967 Feb;57(2):327–334. doi: 10.1073/pnas.57.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ernster L., Orrenius S. Substrate-induced synthesis of the hydroxylating enzyme system of liver microsomes. Fed Proc. 1965 Sep-Oct;24(5):1190–1199. [PubMed] [Google Scholar]
  16. FOUTS J. R., ROGERS L. A. MORPHOLOGICAL CHANGES IN THE LIVER ACCOMPANYING STIMULATION OF MICROSOMAL DRUG METABOLIZING ENZYME ACTIVITY BY PHENOBARBITAL, CHLORDANE, BENZPYRENE OR METHYL-CHOLANTHRENE IN RATS. J Pharmacol Exp Ther. 1965 Jan;147:112–119. [PubMed] [Google Scholar]
  17. GESCHWIND I. I., ALFERT M., SCHOOLEY C. Liver regeneration and hepatic polyploidy in the hypophysectomized rat. Exp Cell Res. 1958 Aug;15(1):232–235. doi: 10.1016/0014-4827(58)90080-6. [DOI] [PubMed] [Google Scholar]
  18. GILLETTE J. R., BRODIE B. B., LA DU B. N. The oxidation of drugs by liver microsomes: on the role of TPNH and oxygen. J Pharmacol Exp Ther. 1957 Apr;119(4):532–540. [PubMed] [Google Scholar]
  19. Gillette J. R. Biochemistry of drug oxidation and reduction by enzymes in hepatic endoplasmic reticulum. Adv Pharmacol. 1966;4:219–261. doi: 10.1016/s1054-3589(08)60100-3. [DOI] [PubMed] [Google Scholar]
  20. Gram T. E., Fouts J. R. Further studies on the metabolism of drugs by subfractions of hepatic microsomes. 3. Effects of the NADPH-generating system. J Pharmacol Exp Ther. 1967 Nov;158(2):317–322. [PubMed] [Google Scholar]
  21. Gram T. E., Rogers L. A., Fouts J. R. Further studies on the metabolism of drugs by subfractions of hepatic microsomes. J Pharmacol Exp Ther. 1967 Mar;155(3):479–493. [PubMed] [Google Scholar]
  22. Greim H. Steigerung der zellfreien Proteinsynthese durch Phenobarbitalbehandlung hungernder Ratten. Hoppe Seylers Z Physiol Chem. 1968 Dec;349(12):1774–1776. [PubMed] [Google Scholar]
  23. HERDSON P. B., GARVIN P. J., JENNINGS R. B. FINE STRUCTURAL CHANGES IN RAT LIVER INDUCED BY PHENOBARBITAL. Lab Invest. 1964 Sep;13:1032–1037. [PubMed] [Google Scholar]
  24. HIMES M., HOFFMAN J., POLLISTER A. W., POST J. Origin of polyploid nuclei in rat livers during regeneration following carbon tetrachloride poisoning. J Mt Sinai Hosp N Y. 1957 Nov-Dec;24(6):935–938. [PubMed] [Google Scholar]
  25. HOWELL R. R., LOEB J. N., TOMKINS G. M. CHARACTERIZATION OF RIBOSOMAL AGGREGATES ISOLATED FROM LIVER. Proc Natl Acad Sci U S A. 1964 Nov;52:1241–1248. doi: 10.1073/pnas.52.5.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hess R., Stäubli W., Riess W. Nature of the hepatomegalic effect produced by ethyl-chlorophenoxy-isobutyrate in the rat. Nature. 1965 Nov 27;208(5013):856–858. doi: 10.1038/208856a0. [DOI] [PubMed] [Google Scholar]
  27. Holtzman J. L., Gillette J. R. The effect of phenobarbital on the turnover of microsomal phospholipid in male and female rats. J Biol Chem. 1968 Jun 10;243(11):3020–3028. [PubMed] [Google Scholar]
  28. Holtzman J. L., Gram T. E., Gigon P. L., Gillette J. R. The distribution of the components of mixed-function oxidase between the rough and the smooth endoplasmic reticulum of liver cells. Biochem J. 1968 Dec;110(3):407–412. doi: 10.1042/bj1100407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Imai Y., Sato R. Conversion of P-450 to P-420 by neutral salts and some other reagents. Eur J Biochem. 1967 Jun;1(4):419–426. doi: 10.1007/978-3-662-25813-2_57. [DOI] [PubMed] [Google Scholar]
  30. James J., Schopman M., Delfgaauw P. The nuclear pattern of the parenchymal cells of the liver after partial hepatectomy. Exp Cell Res. 1966 May;42(2):375–379. doi: 10.1016/0014-4827(66)90302-8. [DOI] [PubMed] [Google Scholar]
  31. Jick H., Shuster L. The turnover of microsomal reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reductase in the livers of mice treated with phenobarbital. J Biol Chem. 1966 Nov 25;241(22):5366–5369. [PubMed] [Google Scholar]
  32. Johnston I. R., Mathias A. P., Pennington F., Ridge D. Distribution of RNA polymerase activity among the various classes of liver nuclei. Nature. 1968 Nov 16;220(5168):668–672. doi: 10.1038/220668a0. [DOI] [PubMed] [Google Scholar]
  33. Jones A. L., Fawcett D. W. Hypertrophy of the agranular endoplasmic reticulum in hamster liver induced by phenobarbital (with a review on the functions of this organelle in liver). J Histochem Cytochem. 1966 Mar;14(3):215–232. doi: 10.1177/14.3.215. [DOI] [PubMed] [Google Scholar]
  34. Jones P. D., Wakil S. J. A requirement for phospholipids by the microsomal reduced diphosphopyridine nucleotide-cytochrome c reductase. J Biol Chem. 1967 Nov 25;242(22):5267–5273. [PubMed] [Google Scholar]
  35. Juchau M. R., Fouts J. R. Effects of 3,4-benzpyrene, phenobarbital, and chlordane on the nucleic acid and protein content of subfractions of rat liver homogenates. Biochem Pharmacol. 1966 Oct;15(10):1453–1464. doi: 10.1016/0006-2952(66)90190-0. [DOI] [PubMed] [Google Scholar]
  36. KATO R., LOEB L., GELBOIN H. V. INCREASED SENSITIVITY OF MICROSOMES FROM PHENOBARBITAL-TREATED RATS TO SYNTHETIC MESSENGER RNA (POLYURIDYLIC ACID): LACK OF EFFECT ON RIBOSOMES. Nature. 1965 Feb 13;205:668–669. doi: 10.1038/205668a0. [DOI] [PubMed] [Google Scholar]
  37. KLINGENBERG M. Pigments of rat liver microsomes. Arch Biochem Biophys. 1958 Jun;75(2):376–386. doi: 10.1016/0003-9861(58)90436-3. [DOI] [PubMed] [Google Scholar]
  38. Kamin H., Masters B. S., Gibson Q. H., Williams C. H., Jr Microsomal TPNH-cytochrome c reductase. Fed Proc. 1965 Sep-Oct;24(5):1164–1171. [PubMed] [Google Scholar]
  39. Kato R., Jondorf W. R., Loeb L. A., Ben T., Gelboin H. V. Studies on the mechanism of drug-induced microsomal enzyme activities. V. Phenobarbital stimulation of endogenous messenger RNA and polyuridylic acid-directed L-[14C]-phenylalanine incorporation. Mol Pharmacol. 1966 Mar;2(2):171–186. [PubMed] [Google Scholar]
  40. Kato R., Loeb L., Gelboin H. V. Microsome-specific stimulation by phenobarbital of amino acid incorporation in vivo. Biochem Pharmacol. 1965 Jul;14(7):1164–1166. doi: 10.1016/0006-2952(65)90047-x. [DOI] [PubMed] [Google Scholar]
  41. Korn E. D. Structure of biological membranes. Science. 1966 Sep 23;153(3743):1491–1498. doi: 10.1126/science.153.3743.1491. [DOI] [PubMed] [Google Scholar]
  42. LESHER S., STROUD A. N., BRUES A. M. The effects of chronic irradiation on DNA synthesis in regenerating mouse liver. Cancer Res. 1960 Oct;20:1341–1346. [PubMed] [Google Scholar]
  43. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  44. Lange G. Verschiedene Induktion der mikrosomalen N- und p-Hydroxylierung von Anilin und N-Athylanilin bei Kaninchen. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1967;257(2):230–256. [PubMed] [Google Scholar]
  45. MARGOLIASH E. The use of ion exchangers in the preparation and purification of cytochrome c. Biochem J. 1954 Apr;56(4):529–535. doi: 10.1042/bj0560529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. MORRISON W. R. A FAST, SIMPLE AND RELIABLE METHOD FOR THE MICRODETERMINATION OF PHOSPHORUS IN BIOLOGICAL MATERIALS. Anal Biochem. 1964 Feb;7:218–224. doi: 10.1016/0003-2697(64)90231-3. [DOI] [PubMed] [Google Scholar]
  47. Mason H. S., North J. C., Vanneste M. Microsomal mixed-function oxidations: the metabolism of xenobiotics. Fed Proc. 1965 Sep-Oct;24(5):1172–1180. [PubMed] [Google Scholar]
  48. Mellors A., Tappel A. L. Hydrolysis of phospholipids by a lysosomal enzyme. J Lipid Res. 1967 Sep;8(5):479–485. [PubMed] [Google Scholar]
  49. NASH T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J. 1953 Oct;55(3):416–421. doi: 10.1042/bj0550416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Nadal C., Zajdela F. Polyploïdie somatique dans le foie de rat. I. Le röle des cellules binuclées dans la genèse des cellules polyploïdes. Exp Cell Res. 1966 Apr;42(1):99–116. doi: 10.1016/0014-4827(66)90324-7. [DOI] [PubMed] [Google Scholar]
  51. OMURA T., SATO R. Fractional solubilization of haemoproteins and partial purification of carbon monoxide-binding cytochrome from liver microsomes. Biochim Biophys Acta. 1963 Apr 2;71:224–226. doi: 10.1016/0006-3002(63)91015-1. [DOI] [PubMed] [Google Scholar]
  52. Omura T., Sato R., Cooper D. Y., Rosenthal O., Estabrook R. W. Function of cytochrome P-450 of microsomes. Fed Proc. 1965 Sep-Oct;24(5):1181–1189. [PubMed] [Google Scholar]
  53. Omura T., Siekevitz P., Palade G. E. Turnover of constituents of the endoplasmic reticulum membranes of rat hepatocytes. J Biol Chem. 1967 May 25;242(10):2389–2396. [PubMed] [Google Scholar]
  54. Orrenius S., Ericsson J. L. Enzyme-membrane relationship in phenobarbital induction of synthesis of drug-metabolizing enzyme system and proliferation of endoplasmic membranes. J Cell Biol. 1966 Feb;28(2):181–198. doi: 10.1083/jcb.28.2.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Orrenius S., Ericsson J. L., Ernster L. Phenobarbital-induced synthesis of the microsomal drug-metabolizing enzyme system and its relationship to the proliferation of endoplasmic membranes. A morphological and biochemical study. J Cell Biol. 1965 Jun;25(3):627–639. doi: 10.1083/jcb.25.3.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Orrenius S., Ernster L. Interaction between liver microsomes and compounds capable of undergoing enzymic hydroxylation. Life Sci. 1967 Jul 15;6(14):1473–1482. doi: 10.1016/0024-3205(67)90327-x. [DOI] [PubMed] [Google Scholar]
  57. Orrenius S., Ernster L. Phenobarbital-induced synthesis of the oxidative demethylating enzymes of rat liver microsomes. Biochem Biophys Res Commun. 1964 May 22;16(1):60–65. doi: 10.1016/0006-291x(64)90211-6. [DOI] [PubMed] [Google Scholar]
  58. PHILLIPS A. H., LANGDON R. G. Hepatic triphosphopyridine nucleotide-cytochrome c reductase: isolation, characterization, and kinetic studies. J Biol Chem. 1962 Aug;237:2652–2660. [PubMed] [Google Scholar]
  59. REMMER H., MERKER H. J. DRUG-INDUCED CHANGES IN THE LIVER ENDOPLASMIC RETICULUM: ASSOCIATION WITH DRUG-METABOLIZING ENZYMES. Science. 1963 Dec 27;142(3600):1657–1658. doi: 10.1126/science.142.3600.1657. [DOI] [PubMed] [Google Scholar]
  60. REMMER H., MERKER H. J. [Enzyme induction and increase of endoplasmic reticulum in liver cells during phenobarbital (Luminal) therapy]. Klin Wochenschr. 1963 Mar 15;41:276–282. doi: 10.1007/BF01483392. [DOI] [PubMed] [Google Scholar]
  61. RIGLER R., Jr [The effect of inflammatory reactions on the nuclear count, desoxyribonucleic acid content and dry weight of mouse liver cells]. Exp Cell Res. 1963 Mar;30:160–170. doi: 10.1016/0014-4827(63)90222-2. [DOI] [PubMed] [Google Scholar]
  62. RYAN K. J., ENGEL L. L. Hydroxylation of steroids at carbon 21. J Biol Chem. 1957 Mar;225(1):103–114. [PubMed] [Google Scholar]
  63. Remmer H., Schenkman J., Estabrook R. W., Sasame H., Gillette J., Narasimhulu S., Cooper D. Y., Rosenthal O. Drug interaction with hepatic microsomal cytochrome. Mol Pharmacol. 1966 Mar;2(2):187–190. [PubMed] [Google Scholar]
  64. Schenkman J. B., Ball J. A., Estabrook R. W. On the use of nicotinamide in assays for microsomal mixed-function oxidase activity. Biochem Pharmacol. 1967 Jun;16(6):1071–1081. doi: 10.1016/0006-2952(67)90280-8. [DOI] [PubMed] [Google Scholar]
  65. Schmid R., Marver H. S., Hammaker L. Enhanced formation of rapidly labelled bilirubin by phenobarbital: hepatic microsomal cytochromes as a possible source. Biochem Biophys Res Commun. 1966 Aug 12;24(3):319–328. doi: 10.1016/0006-291x(66)90158-6. [DOI] [PubMed] [Google Scholar]
  66. Silverman D. A., Talalay P. Studies on the enzymic hydroxylation of 3,4-benzpyrene. Mol Pharmacol. 1967 Jan;3(1):90–101. [PubMed] [Google Scholar]
  67. WILLIAMS C. H., Jr, KAMIN H. Microsomal triphosphopyridine nucleotide-cytochrome c reductase of liver. J Biol Chem. 1962 Feb;237:587–595. [PubMed] [Google Scholar]
  68. Widnell C. C., Unkeless J. C. Partial purification of a lipoprotein with 5'-nucleotidase activity from membranes of rat liver cells. Proc Natl Acad Sci U S A. 1968 Nov;61(3):1050–1057. doi: 10.1073/pnas.61.3.1050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Zeidenberg P., Orrenius S., Ernster L. Increase in levels of glucuronylating enzymes and associated rise in activities of mitochondrial oxidative enzymes upon phenobarbital administration in the rat. J Cell Biol. 1967 Feb;32(2):528–531. doi: 10.1083/jcb.32.2.528. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES