Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1969 Jan 1;40(1):190–208. doi: 10.1083/jcb.40.1.190

RADIOAUTOGRAPHIC STUDIES OF CHOLINE INCORPORATION INTO PERIPHERAL NERVE MYELIN

Walter J Hendelman 1, Richard P Bunge 1
PMCID: PMC2107605  PMID: 5782444

Abstract

This radioautographic study was designed to localize the cytological sites involved in the incorporation of a lipid precursor into the myelin and the myelin-related cell of the peripheral nervous system. Both myelinating and fully myelinated cultures of rat dorsal root ganglia were exposed to a 30-min pulse of tritiated choline and either fixed immediately or allowed 6 or 48 hr of chase incubation before fixation. After Epon embedding, light and electron microscopic radioautograms were prepared with Ilford L-4 emulsion. Analysis of the pattern of choline incorporation into myelinating cultures indicated that radioactivity appeared all along the length of the internode, without there being a preferential site of initial incorporation. Light microscopic radioautograms of cultures at varying states of maturity were compared in order to determine the relative degree of myelin labeling. This analysis indicated that the myelin-Schwann cell unit in the fully myelinated cultures incorporated choline as actively as did this unit in the myelinating cultures. Because of technical difficulties, it was not possible to determine the precise localization of the incorporated radioactivity within the compact myelin. These data are related to recent biochemical studies indicating that the mature myelin of the central nervous system does incorporate a significant amount of lipid precursor under the appropriate experimental conditions. These observations support the concept that a significant amount of myelin-related metabolic activity occurs in mature tissue; this activity is considered part of an essential and continuous process of myelin maintenance and repair.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AUREBECK G., OSTERBERG K., BLAW M., CHOU S., NELSON E. ELECTRON MICROSCOPIC OBSERVATIONS ON METACHROMATIC LEUKODYSTROPHY. Arch Neurol. 1964 Sep;11:273–288. doi: 10.1001/archneur.1964.00460210051005. [DOI] [PubMed] [Google Scholar]
  2. Ansell G. B., Spanner S. The metabolism of labelled ethanolamine in the brain of the rat in vivo. J Neurochem. 1967 Sep;14(9):873–885. doi: 10.1111/j.1471-4159.1967.tb09576.x. [DOI] [PubMed] [Google Scholar]
  3. Austin J., Armstrong D., Fouch S., Mitchell C., Stumpf D., Shearer L., Briner O. Metachromatic leukodystrophy (MLD). 8. MLD in adults; diagnosis and pathogenesis. Arch Neurol. 1968 Mar;18(3):225–240. doi: 10.1001/archneur.1968.00470330015001. [DOI] [PubMed] [Google Scholar]
  4. BACHMANN L., SALPETER M. M. AUTORADIOGRAPHY WITH THE ELECTRON MICROSCOPE; A QUANTITATIVE EVALUATION. Lab Invest. 1965 Jun;14:1041–1053. [PubMed] [Google Scholar]
  5. BEN GEREN B. The formation from the Schwann cell surface of myelin in the peripheral nerves of chick embryos. Exp Cell Res. 1954 Nov;7(2):558–562. doi: 10.1016/s0014-4827(54)80098-x. [DOI] [PubMed] [Google Scholar]
  6. BUNGE R. P., BUNGE M. B., PETERSON E. R. AN ELECTRON MICROSCOPE STUDY OF CULTURED RAT SPINAL CORD. J Cell Biol. 1965 Feb;24:163–191. doi: 10.1083/jcb.24.2.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bachmann L., Salpeter M. M. Absolute sensitivity of electron microscope radioautography. J Cell Biol. 1967 May;33(2):299–305. doi: 10.1083/jcb.33.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bunge M. B., Bunge R. P., Peterson E. R., Murray M. R. A light and electron microscope study of long-term organized cultures of rat dorsal root ganglia. J Cell Biol. 1967 Feb;32(2):439–466. doi: 10.1083/jcb.32.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bunge R. P. Glial cells and the central myelin sheath. Physiol Rev. 1968 Jan;48(1):197–251. doi: 10.1152/physrev.1968.48.1.197. [DOI] [PubMed] [Google Scholar]
  10. CUZNER M. L., DAVISON A. N., GREGSON N. A. CHEMICAL AND METABOLIC STUDIES OF RAT MYELIN OF THE CENTRAL NERVOUS SYSTEM. Ann N Y Acad Sci. 1965 Mar 31;122:86–94. doi: 10.1111/j.1749-6632.1965.tb20194.x. [DOI] [PubMed] [Google Scholar]
  11. Cumings J. N., Thompson E. J., Goodwin H. Sphingolipids and phospholipids in microsomes and myelin from normal and pathological brains. J Neurochem. 1968 Mar;15(3):243–248. doi: 10.1111/j.1471-4159.1968.tb06203.x. [DOI] [PubMed] [Google Scholar]
  12. Cuzner M. L., Davison A. N., Gregson N. A. The chemical composition of vertebrate myelin and microsomes. J Neurochem. 1965 Jun;12(6):469–481. doi: 10.1111/j.1471-4159.1965.tb06774.x. [DOI] [PubMed] [Google Scholar]
  13. DAVISON A. N., GREGSON N. A. The physiological role of cerebron sulphuric acid (sulphatide) in the brain. Biochem J. 1962 Dec;85:558–568. doi: 10.1042/bj0850558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Davison A. N., Gregson N. A. Metabolism of cellular membrane sulpholipids in the rat brain. Biochem J. 1966 Mar;98(3):915–922. doi: 10.1042/bj0980915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jacobs J. M. Experimental diphtheritic neuropathy in the rat. Br J Exp Pathol. 1967 Apr;48(2):204–216. [PMC free article] [PubMed] [Google Scholar]
  16. Korn E. D., Weisman R. A. I. Loss of lipids during preparation of amoebae for electron microscopy. Biochim Biophys Acta. 1966 Apr 4;116(2):309–316. doi: 10.1016/0005-2760(66)90013-0. [DOI] [PubMed] [Google Scholar]
  17. Kuffler S. W., Nicholls J. G. The physiology of neuroglial cells. Ergeb Physiol. 1966;57:1–90. [PubMed] [Google Scholar]
  18. LUCK D. J. Formation of mitochondria in Neurospora crassa. A quantitative radioautographic study. J Cell Biol. 1963 Mar;16:483–499. doi: 10.1083/jcb.16.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mandel P., Nussbaum J. L. Incorporation of 32P into the phosphatides of myelin sheaths and of intracellular membranes. J Neurochem. 1966 Aug;13(8):629–642. doi: 10.1111/j.1471-4159.1966.tb09871.x. [DOI] [PubMed] [Google Scholar]
  20. Matheson D. F. Incorporation of [14C]glycine into protein of the adult rat peripheral nerve: effects of inhibitors. J Neurochem. 1968 Mar;15(3):179–185. doi: 10.1111/j.1471-4159.1968.tb06193.x. [DOI] [PubMed] [Google Scholar]
  21. McMILLAN P. J., DOUGLAS G. W., MORTENSEN R. A. Incorporation of C14 of acetate-1-C14 and pyruvate-2-C14 into brain cholesterol in the intact rat. Proc Soc Exp Biol Med. 1957 Dec;96(3):738–740. doi: 10.3181/00379727-96-23593. [DOI] [PubMed] [Google Scholar]
  22. Moehring T. J., Moehring J. M., Kuchler R. J., Solotorovsky M. The response of cultured mammalian cells to diphtheria toxin. I. Amino acid transport, accumulation, and incorporation in normal and intoxicated sensitive cells. J Exp Med. 1967 Sep 1;126(3):407–422. doi: 10.1084/jem.126.3.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Morgan T. E., Huber G. L. Loss of lipid during fixation for electron microscopy. J Cell Biol. 1967 Mar;32(3):757–760. doi: 10.1083/jcb.32.3.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. NICHOLAS H. J., THOMAS B. E. Cholesterol metabolism and the blood-brain barrier: an experimental study with 2-C14-sodium acetate. Brain. 1961 Jun;84:320–328. doi: 10.1093/brain/84.2.320. [DOI] [PubMed] [Google Scholar]
  25. NICHOLAS H. J., THOMAS B. E. The metabolism of cholesterol and fatty acids in the central nervous system. J Neurochem. 1959 Apr;4(1):42–49. doi: 10.1111/j.1471-4159.1959.tb13172.x. [DOI] [PubMed] [Google Scholar]
  26. NORTON W. T., AUTILIO L. A. THE CHEMICAL COMPOSITION OF BOVINE CNS MYELIN. Ann N Y Acad Sci. 1965 Mar 31;122:77–85. doi: 10.1111/j.1749-6632.1965.tb20193.x. [DOI] [PubMed] [Google Scholar]
  27. Norton W. T., Autilio L. A. The lipid composition of purified bovine brain myelin. J Neurochem. 1966 Apr;13(4):213–222. doi: 10.1111/j.1471-4159.1966.tb06794.x. [DOI] [PubMed] [Google Scholar]
  28. O'Brien J. S., Sampson E. L., Stern M. B. Lipid composition of myelin from the peripheral nervous system. Intradural spinal roots. J Neurochem. 1967 Mar;14(3):357–365. doi: 10.1111/j.1471-4159.1967.tb09532.x. [DOI] [PubMed] [Google Scholar]
  29. Olsson Y. Topographical differences in the vascular permeability of the peripheral nervous system. Acta Neuropathol. 1968 Jan 2;10(1):26–33. doi: 10.1007/BF00690507. [DOI] [PubMed] [Google Scholar]
  30. PETERSON E. R., MURRAY M. R. PATTERNS OF PERIPHERAL DEMYELIMINATION IN VITRO. Ann N Y Acad Sci. 1965 Mar 31;122:39–50. [PubMed] [Google Scholar]
  31. Pritchard E. T. In vivo labelling of sulphatides from [35S]sulphate in rat brain during early growth. J Neurochem. 1966 Jan;13(1):13–21. doi: 10.1111/j.1471-4159.1966.tb10280.x. [DOI] [PubMed] [Google Scholar]
  32. Périer O., Grégoire A. Electron microscopic features of multiple sclerosis lesions. Brain. 1965 Dec;88(5):937–952. doi: 10.1093/brain/88.5.937. [DOI] [PubMed] [Google Scholar]
  33. REVEL J. P., HAY E. D. AN AUTORADIOGRAPHIC AND ELECTRON MICROSCOPIC STUDY OF COLLAGEN SYNTHESIS IN DIFFERENTIATING CARTILAGE. Z Zellforsch Mikrosk Anat. 1963 Oct 8;61:110–144. doi: 10.1007/BF00341524. [DOI] [PubMed] [Google Scholar]
  34. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. ROBERTSON J. D. The ultrastructure of adult vertebrate peripheral myelinated nerve fibers in relation to myelinogenesis. J Biophys Biochem Cytol. 1955 Jul 25;1(4):271–278. doi: 10.1083/jcb.1.4.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Reese T. S., Karnovsky M. J. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol. 1967 Jul;34(1):207–217. doi: 10.1083/jcb.34.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rosenbluth J. Redundant myelin sheaths and other ultrastructural features of the toad cerebellum. J Cell Biol. 1966 Jan;28(1):73–93. doi: 10.1083/jcb.28.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. SALPETER M. M., BACHMANN L. AUTORADIOGRAPHY WITH THE ELECTRON MICROSCOPE. A PROCEDURE FOR IMPROVING RESOLUTION, SENSITIVITY, AND CONTRAST. J Cell Biol. 1964 Aug;22:469–477. doi: 10.1083/jcb.22.2.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. SCHNEIDER W. C. INTRACELLULAR DISTRIBUTION OF ENZYMES. XIII. ENZYMATIC SYNTHESIS OF DEOXYCYTIDINE DIPHOSPHATE CHOLINE AND LECITHIN IN RAT LIVER. J Biol Chem. 1963 Nov;238:3572–3578. [PubMed] [Google Scholar]
  40. Singer M., Green M. R. Autoradiographic studies of uridine incorporation in peripheral nerve of the newt, Triturus. J Morphol. 1968 Mar;124(3):321–344. doi: 10.1002/jmor.1051240306. [DOI] [PubMed] [Google Scholar]
  41. Singer M., Salpeter M. M. The transport of 3H-l-histidine through the Schwann and myelin sheath into the axon, including a reevaluation of myelin function. J Morphol. 1966 Nov;120(3):281–315. doi: 10.1002/jmor.1051200305. [DOI] [PubMed] [Google Scholar]
  42. Torvik A., Sidman R. L. Autoradiographic studies on lipid synthesis in the mouse brain during postnatal development. J Neurochem. 1965 Jul;12(7):555–565. doi: 10.1111/j.1471-4159.1965.tb04248.x. [DOI] [PubMed] [Google Scholar]
  43. WAKSMAN B. H. Experimental study of diphtheritic polyneuritis in the rabbit and guinea pig. III. The bloodnerve barrier in the rabbit. J Neuropathol Exp Neurol. 1961 Jan;20:35–77. doi: 10.1097/00005072-196101000-00003. [DOI] [PubMed] [Google Scholar]
  44. WEBSTER H. D., SPIRO D. Phase and electron microscopic studies of experimental demyelination. I. Variations in myelin sheath contour in normal guinea pig sciatic nerve. J Neuropathol Exp Neurol. 1960 Jan;19:42–69. [PubMed] [Google Scholar]
  45. WEBSTER H. D., SPIRO D., WAKSMAN B., ADAMS R. D. Phase and electron microscopic studies of experimental demyelination. II. Schwann cell changes in guinea pig sciatic nerves during experimental diphtheritic neuritis. J Neuropathol Exp Neurol. 1961 Jan;20:5–34. doi: 10.1097/00005072-196101000-00002. [DOI] [PubMed] [Google Scholar]
  46. WILGRAM G. F., KENNEDY E. P. INTRACELLULAR DISTRIBUTION OF SOME ENZYMES CATALYZING REACTIONS IN THE BIOSYNTHESIS OF COMPLEX LIPIDS. J Biol Chem. 1963 Aug;238:2615–2619. [PubMed] [Google Scholar]
  47. Warren L., Glick M. C. Membranes of animal cells. II. The metabolism and turnover of the surface membrane. J Cell Biol. 1968 Jun;37(3):729–746. doi: 10.1083/jcb.37.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Weller R. O., Mellick R. S. Acid phosphatase and lysosome activity in diphtheritic neuropathy and Wallerian degeneration. Br J Exp Pathol. 1966 Oct;47(5):425–434. [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES