Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1969 Feb 1;40(2):508–528. doi: 10.1083/jcb.40.2.508

DIVISION IN THE DINOFLAGELLATE GYRODINIUM COHNII (SCHILLER)

A New Type of Nuclear Reproduction

Donna F Kubai 1, Hans Ris 1
PMCID: PMC2107612  PMID: 5761923

Abstract

Dinoflagellates are of interest because their chromosomes resemble the nucleoplasm of prokaryotes both chemically and ultrastructurally. We have studied nuclear division in the dinoflagellate Gyrodinium cohnii (Schiller), using cells obtained from cultures undergoing phasic growth. Electron micrographs of serial sections were used to prepare three-dimensional reconstructions of nuclei and chromosomes at various stages of nuclear division. During division, a complex process of invagination of the intact nuclear envelope takes place at one side of the nucleus and results in the formation of parallel cylindrical cytoplasmic channels through the nucleus. These invaginations contain bundles of microtubules, and each of the bundles comes to lie in the cytoplasm of a cylindrical channel. Nuclear constriction occurs perpendicular to these channels without displacement of the microtubules. There are no associations between chromosomes and the cytoplasmic microtubules. In dividing cells most chromosomes become V-shaped, and the apices of the V's make contact with the membrane surrounding cytoplasmic channels. It is proposed that the membrane surrounding cytoplasmic channels in the dividing nucleus may be involved in the separation of daughter chromosomes. Thus, dinoflagellates may resemble prokaryotes in the manner of genophore separation as well as in genophore chemistry and ultrastructure.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DODGE J. D. CYTOCHEMICAL STAINING OF SECTIONS FROM PLASTIC-EMBEDDED FLAGELLATES. Stain Technol. 1964 Nov;39:381–386. doi: 10.3109/10520296409063310. [DOI] [PubMed] [Google Scholar]
  2. FRASCA J. M., PARKS V. R. A ROUTINE TECHNIQUE FOR DOUBLE-STAINING ULTRATHIN SECTIONS USING URANYL AND LEAD SALTS. J Cell Biol. 1965 Apr;25:157–161. doi: 10.1083/jcb.25.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. GRASSE P. P., HOLLANDE A., CACHON J., CACHON ENJUMET M. NOUVELLE INTERPR'ETATION DE L'ULTRASTRUCTURE DU CHROMOSOME DE CERTAINS P'ERIDINIENS (PROROCENTRUM, GYMNODINIUM, AMPHIDINIUM, PLECTODINIUM ET XANTHELLES D'AN'EMONES) C R Hebd Seances Acad Sci. 1965 Feb 8;260:1743–1747. [PubMed] [Google Scholar]
  4. Jenkins R. A. Fine structure of division in ciliate protozoa. I. Micronuclear mitosis in Blepharisma. J Cell Biol. 1967 Aug;34(2):463–481. doi: 10.1083/jcb.34.2.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Johnson U. G., Porter K. R. Fine structure of cell division in Chlamydomonas reinhardi. Basal bodies and microtubules. J Cell Biol. 1968 Aug;38(2):403–425. doi: 10.1083/jcb.38.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Leadbeater B., Dodge J. D. An electron microscope study of nuclear and cell division in a dinoflagellate. Arch Mikrobiol. 1967 Jun 21;57(3):239–254. doi: 10.1007/BF00405950. [DOI] [PubMed] [Google Scholar]
  7. MOLLENHAUER H. H. PLASTIC EMBEDDING MIXTURES FOR USE IN ELECTRON MICROSCOPY. Stain Technol. 1964 Mar;39:111–114. [PubMed] [Google Scholar]
  8. PROVASOLI L., GOLD K. Nutrition of the American strain of Gyrodinium cohnii. Arch Mikrobiol. 1962;42:196–203. doi: 10.1007/BF00408175. [DOI] [PubMed] [Google Scholar]
  9. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. ROBINOW C. F. Morphology of the bacterial nucleus. Br Med Bull. 1962 Jan;18:31–35. doi: 10.1093/oxfordjournals.bmb.a069931. [DOI] [PubMed] [Google Scholar]
  11. ROBINOW C. F. The chromatin bodies of bacteria. Bacteriol Rev. 1956 Dec;20(4):207–242. doi: 10.1128/br.20.4.207-242.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. RYTER A., KELLENBERGER E., BIRCHANDERSEN A., MAALOE O. Etude au microscope électronique de plasmas contenant de l'acide désoxyribonucliéique. I. Les nucléoides des bactéries en croissance active. Z Naturforsch B. 1958 Sep;13B(9):597–605. [PubMed] [Google Scholar]
  13. Ryter A. Association of the nucleus and the membrane of bacteria: a morphological study. Bacteriol Rev. 1968 Mar;32(1):39–54. doi: 10.1128/br.32.1.39-54.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. WILKINS M. H., ZUBAY G. The absence of histone in the bacterium Escherichia coli. II. X-ray diffraction of nucleoprotein extract. J Biophys Biochem Cytol. 1959 Jan 25;5(1):55–58. doi: 10.1083/jcb.5.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. ZUBAY G., WATSON M. R. The absence of histone in the bacterium Escherichia coli. I. Preparation and analysis of nucleoprotein extract. J Biophys Biochem Cytol. 1959 Jan 25;5(1):51–54. doi: 10.1083/jcb.5.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES