Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1969 Feb 1;40(2):426–445. doi: 10.1083/jcb.40.2.426

UNUSUAL MICROTUBULAR PATTERNS AND THREE-DIMENSIONAL MOVEMENT OF MEALYBUG SPERM AND SPERM BUNDLES

Jean Ross 1, W Gerald Robison Jr 1
PMCID: PMC2107614  PMID: 5761921

Abstract

The spermatozoon of the mealybug Pseudococcus obscurus Essig is a filamentous cell (0.25 µ by 300 µ) which exhibits three-dimensional flagellations throughout most of its length. It has microtubules (200 A diameter) and a threadlike nuclear core (0.07–0.09 µ diameter) which extend almost its entire length, but apparently it has no mitochondria, centrioles, typical flagellum, or acrosome. The microtubules are arranged in two and a half concentric rings and total 56 in the most actively motile region but form two or three concentric rings with totals of 28 or 56 tubules, respectively, in less active regions. The relation of unusual microtubular patterns to the 9 + 2 complex and to flagellar motion is discussed. Mealybug spermatozoa are transmitted to the female in motile bundles which are approximately 1.3 µ by 750 µ and have four regions: (1) an anterior corkscrew region; (2) a region which contains approximately 16 spermatozoa; (3) a region of amorphous content; and (4) an endpiece. Bundle motility originates from the synchronous movements of its spermatozoa which appear to be arranged in two concentric multistranded helices. The spermatozoa provide both forward and gyratory motions of the bundle, and the corkscrew complements bundle propulsion by converting part of the rotation into forward movement.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSON J. M. A cytological and cytochemical study of the testicular cyst-cells in the Japanese beetle. Physiol Zool. 1950 Oct;23(4):308–316. doi: 10.1086/physzool.23.4.30152090. [DOI] [PubMed] [Google Scholar]
  2. BISHOP D. W. Sperm motility. Physiol Rev. 1962 Jan;42:1–59. doi: 10.1152/physrev.1962.42.1.1. [DOI] [PubMed] [Google Scholar]
  3. BYERS B., PORTER K. R. ORIENTED MICROTUBULES IN ELONGATING CELLS OF THE DEVELOPING LENS RUDIMENT AFTER INDUCTION. Proc Natl Acad Sci U S A. 1964 Oct;52:1091–1099. doi: 10.1073/pnas.52.4.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DOUTT R. L. The spermatozoon as a diagnostic tool in mealybug taxonomy. J Econ Entomol. 1949 Oct;42(5):835–illust. doi: 10.1093/jee/42.5.835. [DOI] [PubMed] [Google Scholar]
  5. FAWCETT D. W., ITO S. THE FINE STRUCTURE OF BAT SPERMATOZOA. Am J Anat. 1965 May;116:567–609. doi: 10.1002/aja.1001160306. [DOI] [PubMed] [Google Scholar]
  6. Fawcett D. W. The topographical relationship between the plane of the central pair of flagellar fibrils and the transverse axis of the head in guinea-pig spermatozoa. J Cell Sci. 1968 Jun;3(2):187–198. doi: 10.1242/jcs.3.2.187. [DOI] [PubMed] [Google Scholar]
  7. GIBBONS I. R. A method for obtaining serial sections of known orientation from single spermatozoa. J Cell Biol. 1963 Mar;16:626–629. doi: 10.1083/jcb.16.3.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GIBBONS I. R., GRIMSTONE A. V. On flagellar structure in certain flagellates. J Biophys Biochem Cytol. 1960 Jul;7:697–716. doi: 10.1083/jcb.7.4.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GIBBONS I. R. The relationship between the fine structure and direction of beat in gill cilia of a lamellibranch mollusc. J Biophys Biochem Cytol. 1961 Oct;11:179–205. doi: 10.1083/jcb.11.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GRIMSTONE A. V., CLEVELAND L. R. THE FINE STRUCTURE AND FUNCTION OF THE CONTRACTILE AXOSTYLES OF CERTAIN FLAGELLATES. J Cell Biol. 1965 Mar;24:387–400. doi: 10.1083/jcb.24.3.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HUGHES-SCHRADER S. Cytology of coccids (Coccoïdea-Homoptera). Adv Genet. 1948;35(2):127–203. doi: 10.1016/s0065-2660(08)60468-x. [DOI] [PubMed] [Google Scholar]
  12. Makielski S. K. The structure and maturation of the spermatozoa of Sciara coprophila. J Morphol. 1966 Jan;118(1):11–41. doi: 10.1002/jmor.1051180103. [DOI] [PubMed] [Google Scholar]
  13. McIntosh J. R., Porter K. R. Microtubules in the spermatids of the domestic fowl. J Cell Biol. 1967 Oct;35(1):153–173. doi: 10.1083/jcb.35.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. PALADE G. E. A study of fixation for electron microscopy. J Exp Med. 1952 Mar;95(3):285–298. doi: 10.1084/jem.95.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Phillips D. M. Fine structure of Sciara coprophila sperm. J Cell Biol. 1966 Sep;30(3):499–517. doi: 10.1083/jcb.30.3.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Phillips D. M. Observations on spermiogenesis in the fungus gnat Sciara coprophila. J Cell Biol. 1966 Sep;30(3):477–497. doi: 10.1083/jcb.30.3.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Robison W. G., Jr Microtubules in relation to the motility of a sperm syncytium in an armored scale insect. J Cell Biol. 1966 May;29(2):251–265. doi: 10.1083/jcb.29.2.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. SABATINI D. D., BENSCH K., BARRNETT R. J. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol. 1963 Apr;17:19–58. doi: 10.1083/jcb.17.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. SLAUTTERBACK D. B. CYTOPLASMIC MICROTUBULES. I. HYDRA. J Cell Biol. 1963 Aug;18:367–388. doi: 10.1083/jcb.18.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tilney L. G., Hiramoto Y., Marsland D. Studies on the microtubules in heliozoa. 3. A pressure analysis of the role of these structures in the formation and maintenance of the axopodia of Actinosphaerium nucleofilum (Barrett). J Cell Biol. 1966 Apr;29(1):77–95. doi: 10.1083/jcb.29.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tilney L. G., Porter K. R. Studies on microtubules in Heliozoa. I. The fine structure of Actinosphaerium nucleofilum (Barrett), with particular reference to the axial rod structure. Protoplasma. 1965;60(4):317–344. doi: 10.1007/BF01247886. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES