Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1969 Feb 1;40(2):305–321. doi: 10.1083/jcb.40.2.305

THE DEVELOPMENT OF SURFACE SPECIALIZATION IN THE SECRETORY EPITHELIUM OF THE AVIAN SALT GLAND IN RESPONSE TO OSMOTIC STRESS

Stephen A Ernst 1, Richard A Ellis 1
PMCID: PMC2107629  PMID: 5812466

Abstract

Cell surface specialization, a characteristic common to most ion-transporting epithelia, was studied in the salt (nasal) gland of the domestic duck in relation to osmotic stress. Three days after hatching, experimental ducklings were given 1% NaCl to drink for 12 hr and freshwater for the remainder of each day. Control ducklings were maintained exclusively on freshwater. The fine structure of the secretory epithelium was examined on various days of the regimen. The nasal gland epithelium of the secretory lobule is composed of several types of cells. Peripheral cells, lying at the blind ends of the branched secretory tubules, are similar in both control and experimental animals at all stages of glandular development. These generative cells contain few mitochondria and have nearly smooth cell surfaces. Partially specialized secretory cells predominate in the secretory tubules of control animals and appear as transitional cells in the tubular epithelium of salt-stressed animals. These cells contain few mitochondria and bear short folds along their lateral cell surfaces. Fully specialized cells dominate the secretory epithelium of osmotically stressed ducklings. The lateral and basal surfaces of these cells are deeply folded, forming complex intra- and extracellular compartments. This vast increase in absorptive surface area is paralleled by an increase in the number of mitochondria that pack the basal compartments. The development of this fully specialized cell is correlated with the marked increase in (Na+-K+)-ATPase activity in the glands of osmotically stressed birds.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abel J. H., Jr, Ellis R. A. Histochemical and electron microscopic observations on the salt secreting lacrymal glands of marine turtles. Am J Anat. 1966 Mar;118(2):337–357. doi: 10.1002/aja.1001180203. [DOI] [PubMed] [Google Scholar]
  2. BONTING S. L., CARAVAGGIO L. L., CANADY M. R., HAWKINS N. M. STUDIES ON SODIUM-POTASSIUM-ACTIVATED ADENOSINETRIPHOSPHATASE. XI. THE SALT GLAND OF THE HERRING GULL. Arch Biochem Biophys. 1964 Jul 20;106:49–56. doi: 10.1016/0003-9861(64)90155-9. [DOI] [PubMed] [Google Scholar]
  3. BONTING S. L., CARAVAGGIO L. L., HAWKINS N. M. Studies on sodium-potassium-activated adenosinetriphosphatase. IV. Correlation with cation transport sensitive to cardiac glycosides. Arch Biochem Biophys. 1962 Sep;98:413–419. doi: 10.1016/0003-9861(62)90206-0. [DOI] [PubMed] [Google Scholar]
  4. BULGER R. E. FINE STRUCTURE OF THE RECTAL (SALT-SECRETING) GLAND OF THE SPINYDOGFISH, SQUALUS ACANTHIAS. Anat Rec. 1963 Sep;147:95–127. doi: 10.1002/ar.1091470108. [DOI] [PubMed] [Google Scholar]
  5. Ballantyne B., Fourman J. Cholinesterases and the secretory activity on the duck supraorbital gland. J Physiol. 1967 Jan;188(2):32P–33P. [PubMed] [Google Scholar]
  6. Ballantyne B., Wood W. G. A histochemical and biochemical investigation of beta-glucuronidase activity in the quiescent and secreting supra-orbital gland of Anas domesticus. J Physiol. 1967 Jul;191(2):89P–90P. [PubMed] [Google Scholar]
  7. DOYLE W. L. The principal cells of the salt-gland of marine birds. Exp Cell Res. 1960 Nov;21:386–393. doi: 10.1016/0014-4827(60)90270-6. [DOI] [PubMed] [Google Scholar]
  8. Diamond J. M., Bossert W. H. Functional consequences of ultrastructural geometry in "backwards" fluid-transporting epithelia. J Cell Biol. 1968 Jun;37(3):694–702. doi: 10.1083/jcb.37.3.694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. ELLIS R. A., ABEL J. H., Jr INTERCELLULAR CHANNELS IN THE SALT-SECRETING GLANDS OF MARINE TURTLES. Science. 1964 Jun 12;144(3624):1340–1342. doi: 10.1126/science.144.3624.1340. [DOI] [PubMed] [Google Scholar]
  10. ELLIS R. A., GOERTEMILLER C. C., Jr, DELELLIS R. A., KABLOTSKY Y. H. THE EFFECT OF A SALT WATER REGIMEN ON THE DEVELOPMENT OF THE SALT GLANDS OF DOMESTIC DUCKLINGS. Dev Biol. 1963 Dec;8:286–308. doi: 10.1016/0012-1606(63)90031-9. [DOI] [PubMed] [Google Scholar]
  11. Ernst S. A., Goertemiller C. C., Jr, Ellis R. A. The effect of salt regimens on the development of (Na+K+)-dependent ATPase activity during the growth of salt glands of ducklings. Biochim Biophys Acta. 1967 Sep 9;135(4):682–692. doi: 10.1016/0005-2736(67)90098-3. [DOI] [PubMed] [Google Scholar]
  12. FANGE R., SCHMIDT-NIELSEN K., ROBINSON M. Control of secretion from the avian salt gland. Am J Physiol. 1958 Nov;195(2):321–326. doi: 10.1152/ajplegacy.1958.195.2.321. [DOI] [PubMed] [Google Scholar]
  13. FARQUHAR M. G., PALADE G. E. Junctional complexes in various epithelia. J Cell Biol. 1963 May;17:375–412. doi: 10.1083/jcb.17.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. FAWCETT D. W. Physiologically significant specializations of the cell surface. Circulation. 1962 Nov;26:1105–1132. doi: 10.1161/01.cir.26.5.1105. [DOI] [PubMed] [Google Scholar]
  15. Farquhar M. G., Palade G. E. Adenosine triphosphatase localization in amphibian epidermis. J Cell Biol. 1966 Aug;30(2):359–379. doi: 10.1083/jcb.30.2.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Farquhar M. G., Palade G. E. Cell junctions in amphibian skin. J Cell Biol. 1965 Jul;26(1):263–291. doi: 10.1083/jcb.26.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fletcher G. L., Stainer I. M., Holmes W. N. Sequential changes in the adenosinetriphosphatase activity and the electrolyte excretory capacity of the nasal glands of the duck (Anas platyrhynchos) during the period of adaptation to hypertonic saline. J Exp Biol. 1967 Dec;47(3):375–391. doi: 10.1242/jeb.47.3.375a. [DOI] [PubMed] [Google Scholar]
  18. Goertemiller C. C., Jr, Ellis R. A. Specificity of sodium chloride in the stimulation of growth in the salt glands of ducklings. Z Mikrosk Anat Forsch. 1966;74(3):296–302. [PubMed] [Google Scholar]
  19. HOKIN M. R. STUDIES ON A NA+ + K+-DEPENDENT, OUABAIN-SENSITIVE ADENOSINE TRIPHOSPHATASE IN THE AVIAN SALT GLAND. Biochim Biophys Acta. 1963 Sep 3;77:108–120. doi: 10.1016/0006-3002(63)90473-6. [DOI] [PubMed] [Google Scholar]
  20. Hokin M. R. The Na+, and Cl- content of goose salt gland slices and the effects of acetylcholine and ouabain. J Gen Physiol. 1967 Oct;50(9):2197–2209. doi: 10.1085/jgp.50.9.2197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. KINSOLVING C. R., POST R. L., BEAVER D. L. SODIUM PLUS POTASSIUM TRANSPORT ADENOSINE TRIPHOSPHATASE ACTIVITY IN KIDNEY. J Cell Physiol. 1963 Aug;62:85–93. doi: 10.1002/jcp.1030620110. [DOI] [PubMed] [Google Scholar]
  22. Katz A. I., Epstein F. H. The physiological role of sodium-potassium activated adenosine triphosphatase in the active transport of cations across biological membranes. Isr J Med Sci. 1967 Jan-Feb;3(1):155–166. [PubMed] [Google Scholar]
  23. Kaye G. I., Wheeler H. O., Whitlock R. T., Lane N. Fluid transport in the rabbit gallbladder. A combined physiological and electron microscopic study. J Cell Biol. 1966 Aug;30(2):237–268. doi: 10.1083/jcb.30.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Marchesi V. T., Palade G. E. The localization of Mg-Na-K-activated adenosine triphosphatase on red cell ghost membranes. J Cell Biol. 1967 Nov;35(2):385–404. doi: 10.1083/jcb.35.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Moses H. L., Rosenthal A. S., Beaver D. L., Schuffman S. S. Lead ion and phosphatase histochemistry. II. Effect of adenosine triphosphate hydrolysis by lead ion on the histochemical localization of adenosine triphosphatase activity. J Histochem Cytochem. 1966 Oct;14(10):702–710. doi: 10.1177/14.10.702. [DOI] [PubMed] [Google Scholar]
  26. NOVIKOFF A. B., DRUCKER J., SHIN W. Y., GOLDFISCHER S. Further studies of the apparent adenosinetriphosphatase activity of cell membranes in formol-calcium-fixed tissues. J Histochem Cytochem. 1961 Jul;9:434–451. doi: 10.1177/9.4.434. [DOI] [PubMed] [Google Scholar]
  27. PEACHEY L. D., RASMUSSEN H. Structure of the toad's urinary bladder as related to its physiology. J Biophys Biochem Cytol. 1961 Aug;10:529–553. doi: 10.1083/jcb.10.4.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. PHILLIPS J. G., HOLMES W. N., BUTLER D. G. The effect of total and subtotal adrenalectomy on the renal and extra-renal response of the domestic duct (Anas platyrhynchus) to saline loading. Endocrinology. 1961 Nov;69:958–969. doi: 10.1210/endo-69-5-958. [DOI] [PubMed] [Google Scholar]
  29. POST R. L., MERRITT C. R., KINSOLVING C. R., ALBRIGHT C. D. Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J Biol Chem. 1960 Jun;235:1796–1802. [PubMed] [Google Scholar]
  30. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rosenthal A. S., Moses H. L., Beaver D. L., Schuffman S. S. Lead ion and phosphatase histochemistry. I. Nonenzymatic hydrolysis of nucleoside phosphates by lead ion. J Histochem Cytochem. 1966 Oct;14(10):698–701. doi: 10.1177/14.10.698. [DOI] [PubMed] [Google Scholar]
  32. SCHMIDT-NIELSEN K., JORGENSEN C. B., OSAKI H. Extrarenal salt excretion in birds. Am J Physiol. 1958 Apr;193(1):101–107. doi: 10.1152/ajplegacy.1958.193.1.101. [DOI] [PubMed] [Google Scholar]
  33. SCHMIDT-NIELSEN K., SLADEN W. J. Nasal salt secretion in the Humboldt penguin. Nature. 1958 Apr 26;181(4617):1217–1218. doi: 10.1038/1811217b0. [DOI] [PubMed] [Google Scholar]
  34. SCHMIDT-NIELSEN K. The salt-secreting gland of marine birds. Circulation. 1960 May;21:955–967. doi: 10.1161/01.cir.21.5.955. [DOI] [PubMed] [Google Scholar]
  35. SCOTHORNE R. J. The nasal glands of birds: a histological and histochemical study of the inactive gland in the domestic duck. J Anat. 1959 Apr;93(2):246–256. [PMC free article] [PubMed] [Google Scholar]
  36. SCOTT B. L., PEASE D. C. Electron microscopy of the salivary and lacrimal glands of the rat. Am J Anat. 1959 Jan;104:115–161. doi: 10.1002/aja.1001040106. [DOI] [PubMed] [Google Scholar]
  37. SKOU J. C. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta. 1957 Feb;23(2):394–401. doi: 10.1016/0006-3002(57)90343-8. [DOI] [PubMed] [Google Scholar]
  38. THESLEFF S., SCHMIDT-NIELSEN K. An electrophysiological study of the salt gland of the herring gull. Am J Physiol. 1962 Mar;202:597–600. doi: 10.1152/ajplegacy.1962.202.3.597. [DOI] [PubMed] [Google Scholar]
  39. VOELZ H., DWORKIN M. Fine structure of Myxococcus xanthus during morphogenesis. J Bacteriol. 1962 Nov;84:943–952. doi: 10.1128/jb.84.5.943-952.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES