Abstract
Injection of choline-3H into choline-deficient rats resulted in an enhanced incorporation of the label into liver lecithin, as compared to the incorporation of label into liver lecithin of normal rats. The results obtained with the use of different lecithin precursors indicate that in the intact liver cell, both in vivo and in vitro, exchange of choline with phosphatidyl-choline is not significant. The synthesis and secretion of lecithins by the choline-deficient liver compare favorably with the liver of choline-supplemented rats, when both are presented with labeled choline or lysolecithin as lecithin precursors. Radioautography of the choline-deficient liver shows that 5 min after injection of choline-3H the newly synthesized lecithin is found in the endoplasmic reticulum (62%), mitochondria (13%), and at the "cell boundary" (20%). The ratio of the specific activity of microsomal and mitochondrial lecithin, labeled with choline, glycerol, or linoleate, was 1.53 at 5 min after injection, but the ratio of the specific activity of phosphatidyl ethanolamine (PE), labeled with ethanolamine, was 5.3. These results indicate that lecithin and PE are synthesized mainly in the endoplasmic reticulum, and are transferred into mitochondria at different rates. The site of a precursor pool of bile lecithin was studied in the intact rat and in the perfused liver. Following labeling with choline-3H, microsomal lecithin isolated from perfused liver had a specific activity lower than that of bile lecithin, but the specific activity of microsomal linoleyl lecithin was comparable to that of bile lecithin between 30 and 90 min of perfusion. It is proposed that the site of the bile lecithin pool is located in the endoplasmic reticulum and that the pool consists mostly of linoleyl lecithin.
Full Text
The Full Text of this article is available as a PDF (2.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AMICK C. J., STENGER R. J. ULTRASTRUCTURAL ALTERATIONS IN EXPERIMENTAL ACUTE HEPATIC FATTY METAMORPHOSIS. Lab Invest. 1964 Feb;13:128–136. [PubMed] [Google Scholar]
- BALINT J. A., KYRIAKIDES E. C., SPITZER H. L., MORRISON E. S. LECITHIN FATTY ACID COMPOSITION IN BILE AND PLASMA OF MAN, DOGS, RATS, AND OXEN. J Lipid Res. 1965 Jan;6:96–99. [PubMed] [Google Scholar]
- BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
- BLUMENSTEIN J. STUDIES IN PHOSPHOLIPID METABOLISM. I. EFFECT OF GUANIDOACETIC ACID AND CHOLINE ON LIVER PHOSPHOLIPIDS. Can J Biochem. 1964 Aug;42:1183–1194. doi: 10.1139/o64-128. [DOI] [PubMed] [Google Scholar]
- Balint J. A., Beeler D. A., Treble D. H., Spitzer H. L. Studies in the biosynthesis of hepatic and biliary lecithins. J Lipid Res. 1967 Sep;8(5):486–493. [PubMed] [Google Scholar]
- Bjørnstad P., Bremer J. In vivo studies on pathways for the biosynthesis of lecithin in the rat. J Lipid Res. 1966 Jan;7(1):38–45. [PubMed] [Google Scholar]
- Bygrave F. L., Kaiser W. Energy requirements in the incorporation of choline by isolated rat liver mitochondria. Eur J Biochem. 1968 May;4(4):578–581. doi: 10.1111/j.1432-1033.1968.tb00252.x. [DOI] [PubMed] [Google Scholar]
- CARO L. G., VAN TUBERGEN R. P., KOLB J. A. High-resolution autoradiography. I. Methods. J Cell Biol. 1962 Nov;15:173–188. doi: 10.1083/jcb.15.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COLLINS F. D. Heterogeneity of lecithins labelled with phosphorus-32. Nature. 1960 Apr 30;186:366–367. doi: 10.1038/186366b0. [DOI] [PubMed] [Google Scholar]
- COLWELL A. R., Jr Lipid content and volume of bile secreted by choline-deficient rats with fatty livers. Am J Physiol. 1951 Jan;164(1):274–283. doi: 10.1152/ajplegacy.1950.164.1.274. [DOI] [PubMed] [Google Scholar]
- DILS R. R., HUBSCHER G. Metabolism of phospholipids. III. The effect of calcium ions on the incorporation of labelled choline into rat-liver microsomes. Biochim Biophys Acta. 1961 Jan 29;46:505–513. doi: 10.1016/0006-3002(61)90581-9. [DOI] [PubMed] [Google Scholar]
- Dougherty W. J. Perforated BEEM capsules for precipitate-free transfer of ultrathin sections through staining solutions. Stain Technol. 1967 Mar;42(2):104–105. [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- GOLDRICK B., HIRSCH J. A TECHNIQUE FOR QUANTITATIVE RECOVERY OF LIPIDS FROM CHROMATOPLATES. J Lipid Res. 1963 Oct;4:482–483. [PubMed] [Google Scholar]
- Getz G. S., Bartley W., Lurie D., Notton B. M. The phospholipids of various sheep organs, rat liver and of their subcellular fractions. Biochim Biophys Acta. 1968 Mar 4;152(2):325–339. doi: 10.1016/0005-2760(68)90040-4. [DOI] [PubMed] [Google Scholar]
- HAINES D. S., MOOKERJEA S. IMPAIRMENT OF TRIGLYCERIDE TRANSPORT FROM THE LIVER IN CHOLINE DEFICIENCY. Can J Biochem. 1965 Apr;43:507–520. doi: 10.1139/o65-059. [DOI] [PubMed] [Google Scholar]
- Hamilton R. L., Regen D. M., Gray M. E., LeQuire V. S. Lipid transport in liver. I. Electron microscopic identification of very low density lipoproteins in perfused rat liver. Lab Invest. 1967 Feb;16(2):305–319. [PubMed] [Google Scholar]
- Jones A. L., Ruderman N. B., Herrera M. G. Electron microscopic and biochemical study of lipoprotein synthesis in the isolated perfused rat liver. J Lipid Res. 1967 Sep;8(5):429–446. [PubMed] [Google Scholar]
- KENNEDY E. P., WEISS S. B. The function of cytidine coenzymes in the biosynthesis of phospholipides. J Biol Chem. 1956 Sep;222(1):193–214. [PubMed] [Google Scholar]
- Kaiser W., Bygrave F. L. Incorporation of choline into the outer and inner membranes of isolated rat liver mitochondria. Eur J Biochem. 1968 May;4(4):582–585. doi: 10.1111/j.1432-1033.1968.tb00253.x. [DOI] [PubMed] [Google Scholar]
- Kyriakides E. C., Balint J. A. Quantitative recovery of lecithins after argentation chromatography on thin layers. J Lipid Res. 1968 Jan;9(1):142–143. [PubMed] [Google Scholar]
- LANDS W. E. Metabolism of glycerolipids. 2. The enzymatic acylation of lysolecithin. J Biol Chem. 1960 Aug;235:2233–2237. [PubMed] [Google Scholar]
- LONG C., PENNY I. F. The structure of the naturally occurring phosphoglycerides. III. Action of moccasin-venom phospholipase A on ovolecithin and related substances. Biochem J. 1957 Feb;65(2):382–389. doi: 10.1042/bj0650382. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LUCK D. F. FORMATION OF MITOCHONDRIA IN NEUROSPORA CRASSA. A STUDY BASED ON MITOCHONDRIAL DENSITY CHANGES. J Cell Biol. 1965 Mar;24:461–470. doi: 10.1083/jcb.24.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LUCK D. J. Formation of mitochondria in Neurospora crassa. A quantitative radioautographic study. J Cell Biol. 1963 Mar;16:483–499. doi: 10.1083/jcb.16.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lombardi B., Pani P., Schlunk F. F. Choline-deficiency fatty liver: impaired release of hepatic triglycerides. J Lipid Res. 1968 Jul;9(4):437–446. [PubMed] [Google Scholar]
- MILLER L. L., BLY C. G., WATSON M. L., BALE W. F. The dominant role of the liver in plasma protein synthesis; a direct study of the isolated perfused rat liver with the aid of lysine-epsilon-C14. J Exp Med. 1951 Nov;94(5):431–453. doi: 10.1084/jem.94.5.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagley P., Hallinan T. The use of radioactive choline as a label for microsomal membranes. I. Selectivity of label for endoplasmic reticulum and specificity for lecithin. Biochim Biophys Acta. 1968 Sep 17;163(2):218–225. doi: 10.1016/0005-2736(68)90100-4. [DOI] [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenfeld B. Effects of a single choline-deficient meal on the phospholipids of hepatic particulate lipid of the rat. Can J Physiol Pharmacol. 1968 May;46(3):495–498. doi: 10.1139/y68-072. [DOI] [PubMed] [Google Scholar]
- Rytter D., Miller J. E., Cornatzer W. E. Specificity for incorporation of choline and ethanolamine into rat-liver microsomal lecithins. Biochim Biophys Acta. 1968 Mar 4;152(2):418–421. doi: 10.1016/0005-2760(68)90054-4. [DOI] [PubMed] [Google Scholar]
- STEIN Y., SHAPIRO B. Assimilation and dissimilation of fatty acids by the rat liver. Am J Physiol. 1959 Jun;196(6):1238–1241. doi: 10.1152/ajplegacy.1959.196.6.1238. [DOI] [PubMed] [Google Scholar]
- STEIN Y., SHAPIRO B. Glyceride synthesis by microsome fractions of rat liver. Biochim Biophys Acta. 1958 Nov;30(2):271–277. doi: 10.1016/0006-3002(58)90051-9. [DOI] [PubMed] [Google Scholar]
- STEIN Y., STEIN O. Metabolic activity of rat epididymal fat pad labeled selectively by an in vivo incubation technique. Biochim Biophys Acta. 1961 Dec 23;54:555–571. doi: 10.1016/0006-3002(61)90096-8. [DOI] [PubMed] [Google Scholar]
- Skipski V. P., Peterson R. F., Barclay M. Quantitative analysis of phospholipids by thin-layer chromatography. Biochem J. 1964 Feb;90(2):374–378. doi: 10.1042/bj0900374. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stein O., Stein Y. Lipid synthesis, intracellular transport, and secretion. II. Electron microscopic radioautographic study of the mouse lactating mammary gland. J Cell Biol. 1967 Jul;34(1):251–263. doi: 10.1083/jcb.34.1.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stein O., Stein Y. Lipid synthesis, intracellular transport, storage, and secretion. I. Electron microscopic radioautographic study of liver after injection of tritiated palmitate or glycerol in fasted and ethanol-treated rats. J Cell Biol. 1967 May;33(2):319–339. doi: 10.1083/jcb.33.2.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stein Y., Stein O. Metabolism of labeled lysolecithin, lysophosphatidyl ethanolamine and lecithin in the rat. Biochim Biophys Acta. 1966 Feb 1;116(1):95–107. doi: 10.1016/0005-2760(66)90095-6. [DOI] [PubMed] [Google Scholar]
- Stein Y., Widnell C., Stein O. Acylation of lysophosphatides by plasma membrane fractions of rat liver. J Cell Biol. 1968 Oct;39(1):185–192. doi: 10.1083/jcb.39.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stoffel W., Schiefer H. G. Biosynthesis and composition of phosphatides in outer and inner mitochondrial membranes. Hoppe Seylers Z Physiol Chem. 1968 Aug;349(8):1017–1026. doi: 10.1515/bchm2.1968.349.2.1017. [DOI] [PubMed] [Google Scholar]
- Tani H., Suzuki S., Kobayashi M., Kotake Y. The physiological role of choline in guinea pigs. J Nutr. 1967 Jul;92(3):317–324. doi: 10.1093/jn/92.3.317. [DOI] [PubMed] [Google Scholar]
- WELLS I. C., BUCKLEY J. M. LIPID COMPONENTS OF BILE FROM CHOLINE DEFICIENT RATS. Proc Soc Exp Biol Med. 1965 May;119:242–243. doi: 10.3181/00379727-119-30147. [DOI] [PubMed] [Google Scholar]
- WILGRAM G. F., KENNEDY E. P. INTRACELLULAR DISTRIBUTION OF SOME ENZYMES CATALYZING REACTIONS IN THE BIOSYNTHESIS OF COMPLEX LIPIDS. J Biol Chem. 1963 Aug;238:2615–2619. [PubMed] [Google Scholar]
- Wells I. C., Remy C. N. Choline metabolism in normal and choline-deficient rats of different ages. Arch Biochem Biophys. 1965 Oct;112(1):201–206. doi: 10.1016/0003-9861(65)90030-5. [DOI] [PubMed] [Google Scholar]
- Wirtz K. W., Zilversmit D. B. Exchange of phospholipids between liver mitochondria and microsomes in vitro. J Biol Chem. 1968 Jul 10;243(13):3596–3602. [PubMed] [Google Scholar]
- ZILVERSMIT D. B., DILUZIO N. R. The role of choline in the turnover of phospholipids. Am J Clin Nutr. 1958 May-Jun;6(3):235–241. doi: 10.1093/ajcn/6.3.235. [DOI] [PubMed] [Google Scholar]
- ZILVERSMIT D. B., VAN HANDEL E. The origin of bile lecithin and the use of bile to determine plasma lecithin turnover rates. Arch Biochem Biophys. 1958 Jan;73(1):224–232. doi: 10.1016/0003-9861(58)90258-3. [DOI] [PubMed] [Google Scholar]
- Zilversmit D. B. The surface coat of chylomicrons: lipid chemistry. J Lipid Res. 1968 Mar;9(2):180–186. [PubMed] [Google Scholar]