Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1969 Mar 1;40(3):779–801. doi: 10.1083/jcb.40.3.779

CORTICAL ULTRASTRUCTURE OF PARAMECIUM AURELIA

Studies on Isolated Pellicles

Linda A Hufnagel 1
PMCID: PMC2107660  PMID: 4885479

Abstract

Two methods have been devised for the isolation of large quantities of purified pellicles (cortical layers) of Paramecium aurelia. Pellicles isolated by both procedures, when examined by electron microscopy, were found to contain ciliary basal bodies, two types of cortical membranes, ribbons of microtubules, kinetodesmal fibers, and elements of the infraciliary lattice system. By electron microscopy, the extent of preservation of the various cortical structures when pellicles are isolated by each method has been characterized. Pellicles isolated in both ways have been utilized to investigate cortical morphology of Paramecium. Both phase-contrast and electron microscopic observations have been made. Many new ultrastructural features were observed and are reported herein. An interesting result of this study is the discovery in stock CD that the structure of cortical territories (the territory is the functional unit of cortical morphogenesis and physiology) may vary within a single organism. Features which show variation include number of parasomal sacs, microtubular ribbons, and basal bodies (and therefore cilia) per territory, number of microtubules per ribbon, and length of kinetodesmal fibers. The possible significance of these variations, with respect to territory replication, is discussed. In addition, preliminary observations on the solubility of various cortical organelles in the presence of a number of protein-denaturing agents are reported.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARGETSINGER J. THE ISOLATION OF CILIARY BASAL BODIES (KINETOSOMES) FROM TETRAHYMENA PYRIFORMIS. J Cell Biol. 1965 Jan;24:154–157. doi: 10.1083/jcb.24.1.154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BEISSON J., SONNEBORN T. M. CYTOPLASMIC INHERITANCE OF THE ORGANIZATION OF THE CELL CORTEX IN PARAMECIUM AURELIA. Proc Natl Acad Sci U S A. 1965 Feb;53:275–282. doi: 10.1073/pnas.53.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Behnke O., Zelander T. Substructure in negatively stained microtubules of mammalian blood platelets. Exp Cell Res. 1966 Aug;43(1):236–239. doi: 10.1016/0014-4827(66)90401-0. [DOI] [PubMed] [Google Scholar]
  4. EHRET C. F., POWERS E. L. The cell surface of Paramecium. Int Rev Cytol. 1959;8:97–133. doi: 10.1016/s0074-7696(08)62729-1. [DOI] [PubMed] [Google Scholar]
  5. Gall J. G. Microtubule fine structure. J Cell Biol. 1966 Dec;31(3):639–643. doi: 10.1083/jcb.31.3.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gibbons I. R. Chemical dissection of cilia. Arch Biol (Liege) 1965;76(2):317–352. [PubMed] [Google Scholar]
  7. Grim J. N. Isolated ciliary structures of Euplotes patella. Exp Cell Res. 1966 Jan;41(1):206–210. doi: 10.1016/0014-4827(66)90560-x. [DOI] [PubMed] [Google Scholar]
  8. HOFFMAN E. J. THE NUCLEIC ACIDS OF BASAL BODIES ISOLATED FROM TETRAHYMENA PYRIFORMIS. J Cell Biol. 1965 May;25:217–228. doi: 10.1083/jcb.25.2.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HUXLEY A. F., NIEDERGERKE R. Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature. 1954 May 22;173(4412):971–973. doi: 10.1038/173971a0. [DOI] [PubMed] [Google Scholar]
  10. HUXLEY H., HANSON J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature. 1954 May 22;173(4412):973–976. doi: 10.1038/173973a0. [DOI] [PubMed] [Google Scholar]
  11. Kimball R F, Gaither N. Behavior of Nuclei at Conjugation in Paramecium Aurelia. I. Effect of Incomplete Chromosome Sets and Competition between Complete and Incomplete Nuclei. Genetics. 1955 Nov;40(6):878–889. doi: 10.1093/genetics/40.6.878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ledbetter M. C., Porter K. R. Morphology of Microtubules of Plant Cell. Science. 1964 May 15;144(3620):872–874. doi: 10.1126/science.144.3620.872. [DOI] [PubMed] [Google Scholar]
  13. MAZIA D., MITCHISON J. M., MEDINA H., HARRIS P. The direct isolation of the mitotic apparatus. J Biophys Biochem Cytol. 1961 Aug;10:467–474. doi: 10.1083/jcb.10.4.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nanney D. L. Cortical integration in Tetrahymena: an exercise in cytogeometry. J Exp Zool. 1966 Apr;161(3):307–317. doi: 10.1002/jez.1401610302. [DOI] [PubMed] [Google Scholar]
  15. Nanney D. L. Corticotype transmission in Tetrahymena. Genetics. 1966 Oct;54(4):955–968. doi: 10.1093/genetics/54.4.955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. PEASE D. C. THE ULTRASTRUCTURE OF FLAGELLAR FIBRILS. J Cell Biol. 1963 Aug;18:313–326. doi: 10.1083/jcb.18.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. PREER J. R., Jr Genetics of the protozoa. Annu Rev Microbiol. 1957;11:419–438. doi: 10.1146/annurev.mi.11.100157.002223. [DOI] [PubMed] [Google Scholar]
  18. ROTH L. E. A filamentous component of protozoan fibrillar systems. J Ultrastruct Res. 1958 Apr;1(3):223–234. doi: 10.1016/s0022-5320(58)80002-7. [DOI] [PubMed] [Google Scholar]
  19. Ringo D. L. The arrangement of subunits in flagellar fibers. J Ultrastruct Res. 1967 Feb;17(3):266–277. doi: 10.1016/s0022-5320(67)80048-0. [DOI] [PubMed] [Google Scholar]
  20. Rosenbaum J. L., Child F. M. Flagellar regeneration in protozoan flagellates. J Cell Biol. 1967 Jul;34(1):345–364. doi: 10.1083/jcb.34.1.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SEDAR A. W., PORTER K. R. The fine structure of cortical components of Paramecium multimicronucleatum. J Biophys Biochem Cytol. 1955 Nov 25;1(6):583–604. doi: 10.1083/jcb.1.6.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sakai H. Studies on sulfhydryl groups during cell division of sea-urchin eggs. 8. Some properties of mitotic apparatus proteins. Biochim Biophys Acta. 1966 Jan 4;112(1):132–145. doi: 10.1016/s0926-6585(96)90015-1. [DOI] [PubMed] [Google Scholar]
  23. Satir B., Rosenbaum J. L. The isolation and identification of kinetosome-rich fractions from Tetrahymena pyriformis. J Protozool. 1965 Aug;12(3):397–405. doi: 10.1111/j.1550-7408.1965.tb03232.x. [DOI] [PubMed] [Google Scholar]
  24. Schiffer M., Edmundson A. B. Use of helical wheels to represent the structures of proteins and to identify segments with helical potential. Biophys J. 1967 Mar;7(2):121–135. doi: 10.1016/S0006-3495(67)86579-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Williams N. E., Zeuthen E. The development of oral fibers in relation to oral morphogenesis and induced division synchrony in Tetrahymena. C R Trav Lab Carlsberg. 1966;35(6):101–118. [PubMed] [Google Scholar]
  26. YAMAMOTO N., ANDERSON T. F. Genomic masking and recombination between serologically unrelated phages P22 and P221. Virology. 1961 Aug;14:430–439. doi: 10.1016/0042-6822(61)90334-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES