Abstract
Beef liver catalase was injected intravenously into mice, and its distribution in the kidney, myocardium, and liver was studied with the electron microscope. A specific and relatively sensitive method was developed for its ultrastructural localization, based on the peroxidatic activity of catalase and employing a modified Graham and Karnovsky incubation medium. The main features of the medium were a higher concentration of diaminobenzidine, barium peroxide as the source of peroxide, and pH of 8.5. Ultrastructurally, the enzyme was seen to permeate the endothelial fenestrae and basement membranes of tubular and glomerular capillaries of the kidney. The urinary space and tubular lumina contained no reaction product. In the myocardial capillaries, the tracer filled the pinocytotic vesicles but did not diffuse across the intercellular clefts of the endothelium. In liver, uptake of catalase was seen both in hepatocytes and in Kupffer cells.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AEBI H., QUITTI J., HASSAN A. [Uricase, xanthine oxidase and monoamine oxidase as H202-donors in peroxidase decomposition]. Helv Physiol Pharmacol Acta. 1962;20:148–162. [PubMed] [Google Scholar]
- Bruns R. R., Palade G. E. Studies on blood capillaries. II. Transport of ferritin molecules across the wall of muscle capillaries. J Cell Biol. 1968 May;37(2):277–299. doi: 10.1083/jcb.37.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Duve C., Baudhuin P. Peroxisomes (microbodies and related particles). Physiol Rev. 1966 Apr;46(2):323–357. doi: 10.1152/physrev.1966.46.2.323. [DOI] [PubMed] [Google Scholar]
- Fahimi H. D. Cytochemical localization of peroxidase activity in rat hepatic microbodies (peroxisomes). J Histochem Cytochem. 1968 Aug;16(8):547–550. doi: 10.1177/16.8.547. [DOI] [PubMed] [Google Scholar]
- Graham R. C., Jr, Karnovsky M. J. Glomerular permeability. Ultrastructural cytochemical studies using peroxidases as protein tracers. J Exp Med. 1966 Dec 1;124(6):1123–1134. doi: 10.1084/jem.124.6.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
- Graham R. C., Jr, Kellermeyer R. W. Bovine lactoperoxidase as a cytochemical protein tracer for electron microscopy. J Histochem Cytochem. 1968 Apr;16(4):275–278. doi: 10.1177/16.4.275. [DOI] [PubMed] [Google Scholar]
- HEPPEL L. A., PORTERFIELD V. T. Metabolism of inorganic nitrite and nitrate esters; the coupled oxidation of nitrite by peroxide-forming systems and catalase. J Biol Chem. 1949 Apr;178(2):549–556. [PubMed] [Google Scholar]
- KEILIN D., HARTREE E. F. Catalase, peroxidase and metmyoglobin as catalysts of coupled peroxidatic reactions. Biochem J. 1955 Jun;60(2):310–325. doi: 10.1042/bj0600310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karnovsky M. J. The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J Cell Biol. 1967 Oct;35(1):213–236. doi: 10.1083/jcb.35.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LASER H. Peroxidatic activity of catalase. Biochem J. 1955 Sep;61(1):122–127. [PMC free article] [PubMed] [Google Scholar]
- LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MARGOLIASH E., NOVOGRODSKY A. A study of the inhibition of catalase by 3-amino-1:2:4:-triazole. Biochem J. 1958 Mar;68(3):468–475. doi: 10.1042/bj0680468. [DOI] [PMC free article] [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SAMEJIMA T., YANG J. T. RECONSTITUTION OF ACID-DENATURED CATALASE. J Biol Chem. 1963 Oct;238:3256–3261. [PubMed] [Google Scholar]
- SMITH R. E., FARQUHAR M. G. PREPARATION OF THICK SECTIONS FOR CYTOCHEMISTRY AND ELECTRON MICROSCOPY BY A NON-FREEZING TECHNIQUE. Nature. 1963 Nov 16;200:691–691. doi: 10.1038/200691a0. [DOI] [PubMed] [Google Scholar]