Abstract
The marine gastropod molluscs Tridachia crispata, Tridachiella diomedea, and Placobranchus ianthobapsus (Sacoglossa, Opisthobranchia) possess free functional chloroplasts within the cells of the digestive diverticula, as determined by observations on ultrastructure, pigment analyses, and experiments on photosynthetic capacity. In the light, the chloroplasts incorporate H14CO3 - in situ. Reduced radiocarbon is translocated to various chloroplast-free tissues in the animals. The slugs feed on siphonaceous algae from which the chloroplasts are derived. Pigments from the slugs and from known siphonaceous algae, when separated chromatographically and compared, showed similar components. Absorption spectra of extracts of slugs and algae were very similar. The larvae of the slugs are pigment-free up to the post-veliger stage, suggesting that chloroplasts are acquired de novo. with each new generation.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- GIBBS S. P. The ultrastructure of the chloroplasts of algae. J Ultrastruct Res. 1962 Dec;7:418–435. doi: 10.1016/s0022-5320(62)90038-2. [DOI] [PubMed] [Google Scholar]
- Goreau T. F., Goreau N. I. Distribution of Labeled Carbon in Reef-Building Corals with and without Zooxanthellae. Science. 1960 Mar 4;131(3401):668–669. doi: 10.1126/science.131.3401.668. [DOI] [PubMed] [Google Scholar]
- Karakashian S. J., Siegel R. W. A genetic approach to endocellular symbiosis. Exp Parasitol. 1965 Aug;17(1):103–122. doi: 10.1016/0014-4894(65)90015-9. [DOI] [PubMed] [Google Scholar]
- LEDERBERG J. Cell genetics and hereditary symbiosis. Physiol Rev. 1952 Oct;32(4):403–430. doi: 10.1152/physrev.1952.32.4.403. [DOI] [PubMed] [Google Scholar]
- LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muscatine L., Hand C. DIRECT EVIDENCE FOR THE TRANSFER OF MATERIALS FROM SYMBIOTIC ALGAE TO THE TISSUES OF A COELENTERATE. Proc Natl Acad Sci U S A. 1958 Dec 15;44(12):1259–1263. doi: 10.1073/pnas.44.12.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muscatine L., Lenhoff H. M. Symbiosis: On the Role of Algae Symbiotic with Hydra. Science. 1963 Nov 15;142(3594):956–958. doi: 10.1126/science.142.3594.956. [DOI] [PubMed] [Google Scholar]
- Muscatine L. Symbiosis of hydra and algae. 3. Extracellular products of the algae. Comp Biochem Physiol. 1965 Sep;16(1):77–92. doi: 10.1016/0010-406x(65)90165-9. [DOI] [PubMed] [Google Scholar]
- RIS H. Ultrastructure and molecular organization of genetic systems. Can J Genet Cytol. 1961 Jun;3:95–120. doi: 10.1139/g61-015. [DOI] [PubMed] [Google Scholar]
- SABATINI D. D., BENSCH K., BARRNETT R. J. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol. 1963 Apr;17:19–58. doi: 10.1083/jcb.17.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SABATINI D. D., MILLER F., BARRNETT R. J. ALDEHYDE FIXATION FOR MORPHOLOGICAL AND ENZYME HISTOCHEMICAL STUDIES WITH THE ELECTRON MICROSCOPE. J Histochem Cytochem. 1964 Feb;12:57–71. doi: 10.1177/12.2.57. [DOI] [PubMed] [Google Scholar]