Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1969 Sep 1;42(3):817–825. doi: 10.1083/jcb.42.3.817

ULTRASTRUCTURE OF DYADS IN MUSCLE FIBERS OF ASCARIS LUMBRICOIDES

Jack Rosenbluth 1
PMCID: PMC2107699  PMID: 5801429

Abstract

The dyads of Ascaris body muscle cells consist of flattened intracellular cisternae applied to the sarcolemma at the cell surface and along the length of T-tubules. In specimens prepared by conventional methods (glutaraldehyde fixation, osmium tetroxide postfixation, double staining of sections with uranyl acetate and lead hydroxide), both the sarcolemma and the limiting membrane of the cisterna exhibit unit membrane structure and the space between them is occupied by a layer of peg-shaped densities which is referred to as the subsarcolemmal lamina. The lumen of the cisterna contains a serrated layer of dense material referred to as the intracisternal lamina. In specimens fixed in glutaraldehyde, dehydrated, and then postfixed in phosphotungstic acid, with no exposure to osmium tetroxide or heavy metal stains, the membranous components of the dyads appear only as negative images, but the subsarcolemmal and intracisternal laminae still appear dense. Except for the lack of density in membranes and in glycogen deposits, the picture produced by the latter method is very much like that of tissue prepared by conventional methods.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bloom F. E., Aghajanian G. K. Fine structural and cytochemical analysis of the staining of synaptic junctions with phosphotungstic acid. J Ultrastruct Res. 1968 Mar;22(5):361–375. doi: 10.1016/s0022-5320(68)90027-0. [DOI] [PubMed] [Google Scholar]
  2. ESSNER E., NOVIKOFF A. B., QUINTANA N. NUCLEOSIDE PHOSPHATASE ACTIVITIES IN RAT CARDIAC MUSCLE. J Cell Biol. 1965 May;25:201–215. doi: 10.1083/jcb.25.2.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. FARQUHAR M. G., PALADE G. E. Junctional complexes in various epithelia. J Cell Biol. 1963 May;17:375–412. doi: 10.1083/jcb.17.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hoyle G. Nature of the Excitatory Sarcoplasmic Reticular Junction. Science. 1965 Jul 2;149(3679):70–72. doi: 10.1126/science.149.3679.70-a. [DOI] [PubMed] [Google Scholar]
  5. PORTER K. R., PALADE G. E. Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells. J Biophys Biochem Cytol. 1957 Mar 25;3(2):269–300. doi: 10.1083/jcb.3.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Pease D. C. Polysaccharides associated with the exterior surface of epithelial cells: kidney, intestine, brain. J Ultrastruct Res. 1966 Aug;15(5):555–588. doi: 10.1016/s0022-5320(66)80128-4. [DOI] [PubMed] [Google Scholar]
  7. REVEL J. P. The sarcoplasmic reticulum of the bat cricothroid muscle. J Cell Biol. 1962 Mar;12:571–588. doi: 10.1083/jcb.12.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. ROSENBLUTH J. Subsurface cisterns and their relationship to the neuronal plasma membrane. J Cell Biol. 1962 Jun;13:405–421. doi: 10.1083/jcb.13.3.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rosenbluth J. Obliquely striated muscle. 3. Contraction mechanism of Ascaris body muscle. J Cell Biol. 1967 Jul;34(1):15–33. doi: 10.1083/jcb.34.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rosenbluth J. Ultrastructural organization of obliquely striated muscle fibers in Ascaris lumbricoides. J Cell Biol. 1965 Jun;25(3):495–515. doi: 10.1083/jcb.25.3.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Smith D. S. The organization of flight muscle fibers in the Odonata. J Cell Biol. 1966 Jan;28(1):109–126. doi: 10.1083/jcb.28.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Smith D. S. The structure of intersegmental muscle fibers in an insect, Periplaneta americana L. J Cell Biol. 1966 Jun;29(3):449–459. doi: 10.1083/jcb.29.3.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. WIENER J., SPIRO D., LOEWENSTEIN W. R. STUDIES ON AN EPITHELIAL (GLAND) CELL JUNCTION. II. SURFACE STRUCTURE. J Cell Biol. 1964 Sep;22:587–598. doi: 10.1083/jcb.22.3.587. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES