Abstract
This paper describes experiments conducted with membranous and soluble fractions obtained from Escherichia coli that had been grown on succinate, malate, or enriched glucose media. Oxidase and dehydrogenase activities were studied with the following substrates: nicotinamide adenine dinucleotide, reduced form (NADH), nicotinamide adenine dinucleotide phosphate, reduced form (NADPH), succinate, malate, isocitrate, glutamate, pyruvate, and α-ketoglutarate. Respiration was virtually insensitive to poisons that are commonly used to inhibit mitochondrial systems, namely, rotenone, antimycin, and azide. Succinate dehydrogenase and NADH, NADPH, and succinate oxidases were primarily membrane-bound whereas malate, isocitrate, and NADH dehydrogenases were predominantly soluble. It was observed that E. coli malate dehydrogenase could be assayed with the dye 2,6-dichlorophenol indophenol, but that porcine malate dehydrogenase activity could not be assayed, even in the presence of E. coli extracts. The characteristics of E. coli NADH dehydrogenase were shown to be markedly different from those of a mammalian enzyme. The enzyme activities for oxidation of Krebs cycle intermediates (malate, succinate, isocitrate) did not appear to be under coordinate genetic control.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ARMSTRONG J. M. THE MOLAR EXTINCTION COEFFICIENT OF 2,6-DICHLOROPHENOL INDOPHENOL. Biochim Biophys Acta. 1964 Apr 4;86:194–197. doi: 10.1016/0304-4165(64)90180-1. [DOI] [PubMed] [Google Scholar]
- CHANCE B., WILLIAMS G. R. Respiratory enzymes in oxidative phosphorylation. VI. The effects of adenosine diphosphate on azide-treated mitochondria. J Biol Chem. 1956 Jul;221(1):477–489. [PubMed] [Google Scholar]
- Chappell J. B. The oxidation of citrate, isocitrate and cis-aconitate by isolated mitochondria. Biochem J. 1964 Feb;90(2):225–237. doi: 10.1042/bj0900225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox G. B., Snoswell A. M., Gibson F. The use of a ubiquinone-deficient mutant in the study of malate oxidation in Escherichia coli. Biochim Biophys Acta. 1968 Jan 15;153(1):1–12. doi: 10.1016/0005-2728(68)90140-0. [DOI] [PubMed] [Google Scholar]
- Freeman K. B., Haldar D. The inhibition of NADH oxidation in mammalian mitochondria by chloramphenicol. Biochem Biophys Res Commun. 1967 Jul 10;28(1):8–12. doi: 10.1016/0006-291x(67)90397-x. [DOI] [PubMed] [Google Scholar]
- Gray C. T., Wimpenny J. W., Mossman M. R. Regulation of metabolism in facultative bacteria. II. Effects of aerobiosis, anaerobiosis and nutrition on the formation of Krebs cycle enzymes in Escherichia coli. Biochim Biophys Acta. 1966 Mar 28;117(1):33–41. doi: 10.1016/0304-4165(66)90149-8. [DOI] [PubMed] [Google Scholar]
- HENDLER R. W., BANFIELD W. G., TANI J., KUFFEL ON THE CYTOLOGICAL UNIT FOR PROTEIN SYNTHESIS IN VIVO IN E. COLI. III. ELECTRON MICROSCOPIC AND ULTRACENTRIFUGAL EXAMINATION OF INTACT CELLS AND FRACTIONS. Biochim Biophys Acta. 1964 Feb 17;80:307–314. [PubMed] [Google Scholar]
- HENDLER R. W., TANI J. ON THE CYTOLOGICAL UNIT FOR PROTEIN SYNTHESIS IN VIVO IN E. COLI. II. STUDIES WITH INTACT CELLS OF TYPE B. Biochim Biophys Acta. 1964 Feb 17;80:294–306. doi: 10.1016/0926-6550(64)90101-x. [DOI] [PubMed] [Google Scholar]
- Jarett L., Hendler R. W. 2,4-Dinitrophenol and azide as inhibitors of protein and ribonucleic acid synthesis in anaerobic yeast. Biochemistry. 1967 Jun;6(6):1693–1703. doi: 10.1021/bi00858a018. [DOI] [PubMed] [Google Scholar]
- KASHKET E. R., BRODIE A. F. OXIDATIVE PHOSPHORYLATION IN FRACTIONATED BACTERIAL SYSTEMS. VIII. ROLE OF PARTICULATE AND SOLUBLE FRACTIONS FROM ESCHERICHIA COLI. Biochim Biophys Acta. 1963 Oct 8;78:52–65. doi: 10.1016/0006-3002(63)91608-1. [DOI] [PubMed] [Google Scholar]
- KESSEL D., LUBIN M. Transport of proline in Escherichia coli. Biochim Biophys Acta. 1962 Feb 12;57:32–43. doi: 10.1016/0006-3002(62)91074-0. [DOI] [PubMed] [Google Scholar]
- Kovác L., Kuzela S. Effect of uncoupling agents and azide on the synthesis of beta-galactosidase in aerobically and anaerobically grown Escherichia coli. Biochim Biophys Acta. 1966 Oct 31;127(2):355–365. [PubMed] [Google Scholar]
- LARDY H. A., WELLMAN H. Oxidative phosphorylations; rôle of inorganic phosphate and acceptor systems in control of metabolic rates. J Biol Chem. 1952 Mar;195(1):215–224. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- LUBIN M., KESSEL D. H., BUDREAU A., GROSS J. D. The isolation of bacterial mutants defective in amino acid transport. Biochim Biophys Acta. 1960 Aug 26;42:535–538. doi: 10.1016/0006-3002(60)90836-2. [DOI] [PubMed] [Google Scholar]
- MINAKAMI S., RINGLER R. L., SINGER T. P. Studies on the respiratory chain-linked dihydrodiphosphopyridine nucleotide dehydrogenase. I. Assay of the enzyme in particulate and in soluble preparations. J Biol Chem. 1962 Feb;237:569–576. [PubMed] [Google Scholar]
- REPASKE R. Succinic dehydrogenase of Azotobacter vinelandii. J Bacteriol. 1954 Nov;68(5):555–561. doi: 10.1128/jb.68.5.555-561.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SNOSWELL A. M. The reduction of diphosphopyridine nucleotide of rabbit-heart sarcosomes by succinate. Biochim Biophys Acta. 1962 Jun 18;60:143–157. doi: 10.1016/0006-3002(62)90381-5. [DOI] [PubMed] [Google Scholar]
- TANI J., HENDLER R. W. ON THE CYTOLOGICAL UNIT FOR PROTEIN SYNTHESIS IN VIVO IN E. COLI. I. STUDIES WITH SPHEROPLASTS OF TYPE K-12. Biochim Biophys Acta. 1964 Feb 17;80:279–293. doi: 10.1016/0926-6550(64)90100-8. [DOI] [PubMed] [Google Scholar]
