Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1969 Apr 1;41(1):201–226. doi: 10.1083/jcb.41.1.201

MICROTUBULES IN THE FORMATION AND DEVELOPMENT OF THE PRIMARY MESENCHYME IN ARBACIA PUNCTULATA

I. The Distribution of Microtubules

John R Gibbins 1, Lewis G Tilney 1, Keith R Porter 1
PMCID: PMC2107725  PMID: 5775786

Abstract

Prior to gastrulation, the microtubules in the presumptive primary mesenchyme cells appear to diverge from points (satellites) in close association with the basal body of the cilium; from here most of the microtubules extend basally down the lateral margins of the cell. As these cells begin their migration into the blastocoel, they lose their cilia and adopt a spherical form. At the center of these newly formed mesenchyme cells is a centriole on which the microtubules directly converge and from which they radiate in all directions. Later these same cells develop slender pseudopodia containing large numbers of microtubules; the pseudopodia come into contact and fuse to form a "cable" of cytoplasm. Microtubules are now distributed parallel to the long axis of the cable and parallel to the stalks which connect the cell bodies of the mesenchyme cells to the cable. Microtubules are no longer connected to the centrioles in the cell bodies. On the basis of these observations we suggest that microtubules are a morphological expression of a framework which opeartes to shape cells. Since at each stage in the developmental sequence microtubules appear to originate (or insert) on different sites in the cytoplasm, the possibility is discussed that these sites may ultimately control the distribution of the microtubules and thus the developmental sequence of form changes.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold J. M. On the occurrence of microtubules in the developing lens of the squid Loligo pealii. J Ultrastruct Res. 1966 Mar;14(5):534–539. doi: 10.1016/s0022-5320(66)80080-1. [DOI] [PubMed] [Google Scholar]
  2. BALINSKY B. I. An electro microscopic investigation of the mechanisms of adhesion of the cells in a sea urchin blastula and gastrula. Exp Cell Res. 1959 Feb;16(2):429–433. doi: 10.1016/0014-4827(59)90275-7. [DOI] [PubMed] [Google Scholar]
  3. BYERS B., PORTER K. R. ORIENTED MICROTUBULES IN ELONGATING CELLS OF THE DEVELOPING LENS RUDIMENT AFTER INDUCTION. Proc Natl Acad Sci U S A. 1964 Oct;52:1091–1099. doi: 10.1073/pnas.52.4.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. COLLIER J. R. Nucleic acid and protein metabolism of the Ilyanassa embryo. Exp Cell Res. 1961 Aug;24:320–326. doi: 10.1016/0014-4827(61)90434-7. [DOI] [PubMed] [Google Scholar]
  5. DAN K. Cyto-embryology of echinoderms and amphibia. Int Rev Cytol. 1960;9:321–367. doi: 10.1016/s0074-7696(08)62751-5. [DOI] [PubMed] [Google Scholar]
  6. DIRKSEN E. R. The presence of centrioles in artificially activated sea urchin eggs. J Biophys Biochem Cytol. 1961 Oct;11:244–247. doi: 10.1083/jcb.11.1.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davidson E. H., Haslett G. W., Finney R. J., Allfrey V. G., Mirsky A. E. Evidence for prelocalization of cytoplasmic factors affecting gene activation in early embryogenesis. Proc Natl Acad Sci U S A. 1965 Sep;54(3):696–704. doi: 10.1073/pnas.54.3.696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GUSTAFSON T., WOLPERT L. Studies on the cellular basis of morphogenesis in the sea urchin embryo. Directed movements of primary mesenchvme cells in normal and vegetalized larvae. Exp Cell Res. 1961 Jun;24:64–79. doi: 10.1016/0014-4827(61)90248-8. [DOI] [PubMed] [Google Scholar]
  9. GUSTAFSON T., WOLPERT L. THE CELLULAR BASIS OF MORPHOGENESIS AND SEA URCHIN DEVELOPMENT. Int Rev Cytol. 1963;15:139–214. doi: 10.1016/s0074-7696(08)61117-1. [DOI] [PubMed] [Google Scholar]
  10. Gustafson T., Wolpert L. Cellular movement and contact in sea urchin morphogenesis. Biol Rev Camb Philos Soc. 1967 Aug;42(3):442–498. doi: 10.1111/j.1469-185x.1967.tb01482.x. [DOI] [PubMed] [Google Scholar]
  11. Inoué S., Sato H. Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. J Gen Physiol. 1967 Jul;50(6 Suppl):259–292. [PMC free article] [PubMed] [Google Scholar]
  12. Overton J. Microtubules and microfibrils in morphogenesis of the scale cells of Ephestia kühniella. J Cell Biol. 1966 May;29(2):293–305. doi: 10.1083/jcb.29.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Peters A., Vaughn J. E. Microtubules and filaments in the axons and astrocytes of early postnatal rat optic nerves. J Cell Biol. 1967 Jan;32(1):113–119. doi: 10.1083/jcb.32.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. RENAUD F. L., SWIFT H. THE DEVELOPMENT OF BASAL BODIES AND FLAGELLA IN ALLOMYCES ARBUSCULUS. J Cell Biol. 1964 Nov;23:339–354. doi: 10.1083/jcb.23.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. RICHARDSON K. C., JARETT L., FINKE E. H. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 1960 Nov;35:313–323. doi: 10.3109/10520296009114754. [DOI] [PubMed] [Google Scholar]
  17. ROTH T. F., PORTER K. R. YOLK PROTEIN UPTAKE IN THE OOCYTE OF THE MOSQUITO AEDES AEGYPTI. L. J Cell Biol. 1964 Feb;20:313–332. doi: 10.1083/jcb.20.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. SABATINI D. D., BENSCH K., BARRNETT R. J. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol. 1963 Apr;17:19–58. doi: 10.1083/jcb.17.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tilney L. G., Gibbins J. R. Microtubules in the formation and development of the primary mesenchyme in Arbacia punctulata. II. An experimental analysis of their role in development and maintenance of cell shape. J Cell Biol. 1969 Apr;41(1):227–250. doi: 10.1083/jcb.41.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tilney L. G., Hiramoto Y., Marsland D. Studies on the microtubules in heliozoa. 3. A pressure analysis of the role of these structures in the formation and maintenance of the axopodia of Actinosphaerium nucleofilum (Barrett). J Cell Biol. 1966 Apr;29(1):77–95. doi: 10.1083/jcb.29.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tilney L. G., Porter K. R. Studies on the microtubules in heliozoa. II. The effect of low temperature on these structures in the formation and maintenance of the axopodia. J Cell Biol. 1967 Jul;34(1):327–343. doi: 10.1083/jcb.34.1.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tilney L. G. Studies on the microtubules in heliozoa. IV. The effect of colchicine on the formation and maintenance of the axopodia and the redevelopment of pattern in Actinosphaerium nucleofilum (Barrett). J Cell Sci. 1968 Dec;3(4):549–562. doi: 10.1242/jcs.3.4.549. [DOI] [PubMed] [Google Scholar]
  23. WOLPERT L., GUSTAFSON T. Studies on the cellular basis of morphogenesis of the sea urchin embryo. Development of the skeletal pattern. Exp Cell Res. 1961 Nov;25:311–325. doi: 10.1016/0014-4827(61)90282-8. [DOI] [PubMed] [Google Scholar]
  24. WOLPERT L., GUSTAFSON T. Studies on the cellular basis of morphogenesis of the sea urchin embryo. The formation of the blastula. Exp Cell Res. 1961 Nov;25:374–382. doi: 10.1016/0014-4827(61)90287-7. [DOI] [PubMed] [Google Scholar]
  25. WOLPERT L., MERCER E. H. An electron microscope study of the development of the blastula of the sea urchin embryo and its radial polarity. Exp Cell Res. 1963 Apr;30:280–300. doi: 10.1016/0014-4827(63)90300-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES