Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1969 Apr 1;41(1):167–176. doi: 10.1083/jcb.41.1.167

ISOLATION AND PROPERTIES OF SECRETORY GRANULES FROM RAT ISLETS OF LANGERHANS

III. Studies of the Stability of the Isolated Beta Granules

S L Howell 1, D A Young 1, P E Lacy 1
PMCID: PMC2107727  PMID: 4887229

Abstract

A partially purified secretory granule fraction, isolated from rat islets of Langerhans by differential centrifugation, was used for investigating the stability of the beta granules during incubation in various conditions. Effects of pH, temperature, and time were studied; the granules possessed optimal stability at 4° and pH 6.0, and could be solubilized at pH 4.0 or 8.5, or in the presence of sodium deoxycholate, but not by phospholipase c, ouabain, or alloxan. Incubation with glucose or some of its metabolites, or with tolbutamide, ATP, or cyclic 3',5'-AMP did not alter the stability of the beta granules Exogenous insulin-131I was not bound by the isolated granules under the conditions used; no specific insulin-degrading activity could be detected in subcellular fractions of the islets. These findings indicate that intracellular solubilization of the granules with subsequent diffusion of the insulin into the extracellular space is not a likely mode of insulin secretion in vivo, and suggest that a crystalline zinc-insulin complex may exist in the matrix of the beta granules.

Full Text

The Full Text of this article is available as a PDF (599.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Curry D. L., Bennett L. L., Grodsky G. M. Requirement for calcium ion in insulin secretion by the perfused rat pancreas. Am J Physiol. 1968 Jan;214(1):174–178. doi: 10.1152/ajplegacy.1968.214.1.174. [DOI] [PubMed] [Google Scholar]
  2. Greider M. H., Howell S. L., Lacy P. E. Isolation and properties of secretory granules from rat islets of Langerhans. II. Ultrastructure of the beta granule. J Cell Biol. 1969 Apr;41(1):162–166. doi: 10.1083/jcb.41.1.162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. HALLAS-M|OLLER K., PETERSEN K., SCHLICHTKRULL J. Crystalline and amorphous insulin-zinc compounds with prolonged action. Science. 1952 Oct 10;116(3015):394–398. doi: 10.1126/science.116.3015.394. [DOI] [PubMed] [Google Scholar]
  4. Howell S. L., Fink C. J., Lacy P. E. Isolation and properties of secretory granules from rat islets of Langerhans. I. Isolation of a secretory granule fraction. J Cell Biol. 1969 Apr;41(1):154–161. doi: 10.1083/jcb.41.1.154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. KOTOULAS O. B., MORRISON G. R., RECANT L. GLUTATHIONE-INSULIN TRANSHYDROGENASE ACTIVITY IN PANCREATIC ISLETS. Biochim Biophys Acta. 1965 Feb 15;97:350–352. doi: 10.1016/0304-4165(65)90104-2. [DOI] [PubMed] [Google Scholar]
  6. LACY P. E. Electron microscopy of the beta cell of the pancreas. Am J Med. 1961 Dec;31:851–859. doi: 10.1016/0002-9343(61)90024-9. [DOI] [PubMed] [Google Scholar]
  7. Lacy P. E., Howell S. L., Young D. A., Fink C. J. New hypothesis of insulin secretion. Nature. 1968 Sep 14;219(5159):1177–1179. doi: 10.1038/2191177a0. [DOI] [PubMed] [Google Scholar]
  8. Lacy P. E., Kostianovsky M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes. 1967 Jan;16(1):35–39. doi: 10.2337/diab.16.1.35. [DOI] [PubMed] [Google Scholar]
  9. MIRSKY I. A., PERISUTTI G., DIXON F. J. The destruction of I131-labeled insulin by rat liver extracts. J Biol Chem. 1955 May;214(1):397–408. [PubMed] [Google Scholar]
  10. Malaisse W. J., Malaisse-Lagae F., Mayhew D. A possible role for the adenylcyclase system in insulin secretion. J Clin Invest. 1967 Nov;46(11):1724–1734. doi: 10.1172/JCI105663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Matschinsky F. M., Ellerman J. E. Metabolism of glucose in the islets of Langerhans. J Biol Chem. 1968 May 25;243(10):2730–2736. [PubMed] [Google Scholar]
  12. Merimee T. J., Lillicrap D. A., Rabinowitz D. Effect of arginine on serum-levels of human growth-hormone. Lancet. 1965 Oct 2;2(7414):668–670. doi: 10.1016/s0140-6736(65)90399-5. [DOI] [PubMed] [Google Scholar]
  13. Montague W., Taylor K. W. Pentitols and insulin release by isolated rat islets of Langerhans. Biochem J. 1968 Sep;109(3):333–339. doi: 10.1042/bj1090333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. POST R. L., MERRITT C. R., KINSOLVING C. R., ALBRIGHT C. D. Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J Biol Chem. 1960 Jun;235:1796–1802. [PubMed] [Google Scholar]
  15. Poisner A. M., Douglas W. W. Adenosine triphosphate and adenosine triphosphatase in hormone-containing granules of posterior pituitary gland. Science. 1968 Apr 12;160(3824):203–204. doi: 10.1126/science.160.3824.203. [DOI] [PubMed] [Google Scholar]
  16. TOMIZAWA H. H., HALSEY Y. D. Isolation of an insulin-degrading enzyme from beef liver. J Biol Chem. 1959 Feb;234(2):307–310. [PubMed] [Google Scholar]
  17. WATKINS D., COOPERSTEIN S. J., LAZAROW A. ALLOXAN DISTRIBUTION (IN VITRO) BETWEEN CELLS AND EXTRACELLULAR FLUID. Am J Physiol. 1964 Aug;207:431–435. doi: 10.1152/ajplegacy.1964.207.2.431. [DOI] [PubMed] [Google Scholar]
  18. Williams R. H., Ensinck J. W. Secretion, fates and actions of insulin and related products. Diabetes. 1966 Sep;15(9):623–654. doi: 10.2337/diab.15.9.623. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES