Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1969 Apr 1;41(1):227–250. doi: 10.1083/jcb.41.1.227

MICROTUBULES IN THE FORMATION AND DEVELOPMENT OF THE PRIMARY MESENCHYME IN ARBACIA PUNCTULATA

II. An Experimental Analysis of Their Role in Development and Maintenance of Cell Shape

Lewis G Tilney 1, John R Gibbins 1
PMCID: PMC2107737  PMID: 5775787

Abstract

To experimentally test the suggestion made in the preceding paper that the microtubules are involved in cell shape development during the formation and differentiation of the primary mesenchyme, we applied to the embryos two types of agents which affect cytoplasmic microtubules: (a) colchicine and hydrostatic pressure, which cause the microtubules to disassemble, and (b) D2O, which tends to stabilize them. When the first type of agent is applied to sea urchin gastrulae, the development of the primary mesenchyme ceases, the microtubules disappear, and the cells tend to spherulate. With D2O development also ceases, but the tubules appear "frozen," and the cell asymmetries persist unaltered. These agents appear to block development by primarily interfering with the sequential disassembly and/or reassembly of microtubules into new patterns. The microtubules, therefore, appear to be influential in the development of cell form. On the other hand through a careful analysis of the action of these agents and others on both intra- and extracellular factors, we concluded that the microtubules do rather little for the maintenance of cell shape in differentiated tissues.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASTERITA H. L., MARSLAND D. PRESSURE-TEMPERATURE STUDIES ON THE HYALINE MEMBRANE OF SEA URCHIN EGGS. J Cell Physiol. 1964 Oct;64:221–237. doi: 10.1002/jcp.1030640207. [DOI] [PubMed] [Google Scholar]
  2. BYERS B., PORTER K. R. ORIENTED MICROTUBULES IN ELONGATING CELLS OF THE DEVELOPING LENS RUDIMENT AFTER INDUCTION. Proc Natl Acad Sci U S A. 1964 Oct;52:1091–1099. doi: 10.1073/pnas.52.4.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. FAWCETT W., WITEBSKY F. OBSERVATIONS ON THE ULTRASTRUCTURE OF NUCLEATED ERYTHROCYTES AND THROMBOCYTES, WITH PARTICULAR REFERENCE TO THE STRUCTURAL BASIS OF THEIR DISCOIDAL SHAPE. Z Zellforsch Mikrosk Anat. 1964 May 29;62:785–806. doi: 10.1007/BF00342184. [DOI] [PubMed] [Google Scholar]
  4. GROSS P. R., SPINDEL W. Heavy water inhibition of cell division: an approach to mechanism. Ann N Y Acad Sci. 1960 Oct 7;90:500–522. doi: 10.1111/j.1749-6632.1960.tb23267.x. [DOI] [PubMed] [Google Scholar]
  5. Gibbins J. R., Tilney L. G., Porter K. R. Microtubules in the formation and development of the primary mesenchyme in Arbacia punctulata. I. The distribution of microtubules. J Cell Biol. 1969 Apr;41(1):201–226. doi: 10.1083/jcb.41.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Green P. B. Mechanism for Plant Cellular Morphogenesis. Science. 1962 Dec 28;138(3548):1404–1405. doi: 10.1126/science.138.3548.1404. [DOI] [PubMed] [Google Scholar]
  7. HARRIS P. Some structural and functional aspects of the mitotic apparatus in sea urchin embryos. J Cell Biol. 1962 Sep;14:475–487. doi: 10.1083/jcb.14.3.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kane R. E., Forer A. The mitotic apparatus. Structural changes after isolation. J Cell Biol. 1965 Jun;25(3 Suppl):31–39. doi: 10.1083/jcb.25.3.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LANDAU J. V., THIBODEAU L. The micromorphology of Amoeba proteus during pressure-induced changes in the sol-gel cycle. Exp Cell Res. 1962 Sep;27:591–594. doi: 10.1016/0014-4827(62)90027-7. [DOI] [PubMed] [Google Scholar]
  10. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. MALAWISTA S. E. ON THE ACTION OF COLCHICINE, THE MELANOCYTE MODEL. J Exp Med. 1965 Aug 1;122:361–384. doi: 10.1084/jem.122.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. MARSHALL J. M., NACHMIAS V. T. CELL SURFACE AND PINOCYTOSIS. J Histochem Cytochem. 1965 Feb;13:92–104. doi: 10.1177/13.2.92. [DOI] [PubMed] [Google Scholar]
  13. MARSLAND D. The mechanisms of cell division; temperature-pressure experiments on the cleaving eggs of Arbacia punctulata. J Cell Physiol. 1950 Oct;36(2):205–227. doi: 10.1002/jcp.1030360207. [DOI] [PubMed] [Google Scholar]
  14. MARSLAND D., ZIMMERMAN A. M. STRUCTURAL STABILIZATION OF THE MITOTIC APPARATUS BY HEAVY WATER, IN THE CLEAVING EGGS OF ARBACIA PUNCTULATA; INCREASED RESISTANCE TO PRESSURE-INDUCED DISORGANIZATION. Exp Cell Res. 1965 May;38:306–313. doi: 10.1016/0014-4827(65)90406-4. [DOI] [PubMed] [Google Scholar]
  15. Marsland D. Anti-mitotic effects of colchicine and hydrostatic pressure; synergistic action on the cleaving eggs of Lytechinus variegatus. J Cell Physiol. 1966 Apr;67(2):333–338. doi: 10.1002/jcp.1040670213. [DOI] [PubMed] [Google Scholar]
  16. Marsland D., Asterita H. Counteraction of the anti-mitotic effects of D20 in the dividing eggs of Argacia punctulata: a temperature-pressure analysis. Exp Cell Res. 1966 May;42(2):316–327. doi: 10.1016/0014-4827(66)90296-5. [DOI] [PubMed] [Google Scholar]
  17. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. ROBBINS E., GONATAS N. K. THE ULTRASTRUCTURE OF A MAMMALIAN CELL DURING THE MITOTIC CYCLE. J Cell Biol. 1964 Jun;21:429–463. doi: 10.1083/jcb.21.3.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. ROTH L. E., DANIELS E. W. Electron microscopic studies of mitosis in amebae. II. The giant ameba Pelomyxa carolinensis. J Cell Biol. 1962 Jan;12:57–78. doi: 10.1083/jcb.12.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rudzinska M. A. The fine structure and function of the tentacle in Tokophrya infusionum. J Cell Biol. 1965 Jun;25(3):459–477. doi: 10.1083/jcb.25.3.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. THEG D. E. CYTOPLASMIC MICROTUBULES IN DIFFERENT ANIMAL CELLS. J Cell Biol. 1964 Nov;23:265–275. doi: 10.1083/jcb.23.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tilney L. G., Hiramoto Y., Marsland D. Studies on the microtubules in heliozoa. 3. A pressure analysis of the role of these structures in the formation and maintenance of the axopodia of Actinosphaerium nucleofilum (Barrett). J Cell Biol. 1966 Apr;29(1):77–95. doi: 10.1083/jcb.29.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tilney L. G., Porter K. R. Studies on the microtubules in heliozoa. II. The effect of low temperature on these structures in the formation and maintenance of the axopodia. J Cell Biol. 1967 Jul;34(1):327–343. doi: 10.1083/jcb.34.1.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tilney L. G. Studies on the microtubules in heliozoa. IV. The effect of colchicine on the formation and maintenance of the axopodia and the redevelopment of pattern in Actinosphaerium nucleofilum (Barrett). J Cell Sci. 1968 Dec;3(4):549–562. doi: 10.1242/jcs.3.4.549. [DOI] [PubMed] [Google Scholar]
  25. WATSON M. L. Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol. 1958 Jul 25;4(4):475–478. doi: 10.1083/jcb.4.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. ZIMMERMAN A. M., MARSLAND D. CELL DIVISION: EFFECTS OF PRESSURE ON THE MITOTIC MECHANISMS OF MARINE EGGS (ARBACIA PUNCTULATA). Exp Cell Res. 1964 Jul;35:293–302. doi: 10.1016/0014-4827(64)90096-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES