Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1969 Apr 1;41(1):33–58. doi: 10.1083/jcb.41.1.33

INTESTINAL CAPILLARIES

I. Permeability to Peroxidase and Ferritin

F Clementi 1, G E Palade 1
PMCID: PMC2107738  PMID: 5775791

Abstract

Horseradish peroxidase (mol. diam. ≃50 A) and ferritin (mol. diam. ≃110 A) were used as probe molecules for the small and large pore system, respectively, in blood capillaries of the intestinal mucosa of the mouse. Peroxidase distribution was followed in time, after intravenous injection, by applying the Graham-Karnovsky histochemical procedure to aldehyde-fixed specimens. The tracer was found to leave the plasma rapidly and to reach the pericapillary spaces 1 min post injection. Between 1 min and 1 min 30 sec, gradients of peroxidase reaction product could be demonstrated regularly around the capillaries; their highs were located opposite the fenestrated parts of the endothelium. These gradients were replaced by even distribution past 1 min 30 sec. Ferritin, followed directly by electron microscopy, appeared in the pericapillary spaces 3–4 min after i.v. injection. Like peroxidase, it initially produced transient gradients with highs opposite the fenestrated parts of the endothelium. For both tracers, there was no evidence of movement through intercellular junctions, and transport by plasmalemmal vesicles appeared less efficient than outflow through fenestrae. It is concluded that, in the blood capillaries of the inintestinal mucosa, the diaphragms of the endothelial fenestrae contain the structural equivalents of the small pore system. The large pore system seems to be restricted to a fraction of the fenestral population which presumably consists of diaphragm-free or diaphragm-deficient units.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez O. A., Yudilevich D. L. Capillary permeability and tissue exchange of water and electrolytes in the stomach. Am J Physiol. 1967 Aug;213(2):315–322. doi: 10.1152/ajplegacy.1967.213.2.315. [DOI] [PubMed] [Google Scholar]
  2. BENNETT H. S., LUFT J. H., HAMPTON J. C. Morphological classifications of vertebrate blood capillaries. Am J Physiol. 1959 Feb;196(2):381–390. doi: 10.1152/ajplegacy.1959.196.2.381. [DOI] [PubMed] [Google Scholar]
  3. BOAK J. L., WOODRUFF M. F. A MODIFIED TECHNIQUE FOR COLLECTING MOUSE THORACIC DUCT LYMPH. Nature. 1965 Jan 23;205:396–397. doi: 10.1038/205396a0. [DOI] [PubMed] [Google Scholar]
  4. Bruns R. R., Palade G. E. Studies on blood capillaries. I. General organization of blood capillaries in muscle. J Cell Biol. 1968 May;37(2):244–276. doi: 10.1083/jcb.37.2.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bruns R. R., Palade G. E. Studies on blood capillaries. II. Transport of ferritin molecules across the wall of muscle capillaries. J Cell Biol. 1968 May;37(2):277–299. doi: 10.1083/jcb.37.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DELANEY J. P., GRIM E. CANINE GASTRIC BLOOD FLOW AND ITS DISTRIBUTION. Am J Physiol. 1964 Dec;207:1195–1202. doi: 10.1152/ajplegacy.1964.207.6.1195. [DOI] [PubMed] [Google Scholar]
  7. Elfvin L. G. The ultrastructure of the capillary fenestrae in the adrenal medulla of the rat. J Ultrastruct Res. 1965 Jun;12(5):687–704. doi: 10.1016/s0022-5320(65)80056-9. [DOI] [PubMed] [Google Scholar]
  8. FARQUHAR M. G. Fine structure and function in capillaries of the anterior pituitary gland. Angiology. 1961 Jul;12:270–292. doi: 10.1177/000331976101200704. [DOI] [PubMed] [Google Scholar]
  9. FARQUHAR M. G., PALADE G. E. Glomerular permeability. II. Ferritin transfer across the glomerular capillary wall in nephrotic rats. J Exp Med. 1961 Nov 1;114:699–716. doi: 10.1084/jem.114.5.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Farquhar M. G., Palade G. E. Cell junctions in amphibian skin. J Cell Biol. 1965 Jul;26(1):263–291. doi: 10.1083/jcb.26.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fuchs A., Weibel E. R. Morphometrische Untersuchung der Verteilung einer spezifischen cytoplasmatischen Organelle in Endothelzellen der Ratte. Z Zellforsch Mikrosk Anat. 1966;73(1):1–9. [PubMed] [Google Scholar]
  12. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  13. KARRER H. E. The striated musculature of blood vessels. II. Cell interconnections and cell surface. J Biophys Biochem Cytol. 1960 Sep;8:135–150. doi: 10.1083/jcb.8.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Karnovsky M. J. The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J Cell Biol. 1967 Oct;35(1):213–236. doi: 10.1083/jcb.35.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Palade G. E., Bruns R. R. Structural modulations of plasmalemmal vesicles. J Cell Biol. 1968 Jun;37(3):633–649. doi: 10.1083/jcb.37.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. RENKIN E. M. TRANSPORT OF LARGE MOLECULES ACROSS CAPILLARY WALLS. Physiologist. 1964 Feb;60:13–28. [PubMed] [Google Scholar]
  18. RHODIN J. A. The diaphragm of capillary endothelial fenestrations. J Ultrastruct Res. 1962 Apr;6:171–185. doi: 10.1016/s0022-5320(62)90052-7. [DOI] [PubMed] [Google Scholar]
  19. SMITH R. E., FARQUHAR M. G. PREPARATION OF THICK SECTIONS FOR CYTOCHEMISTRY AND ELECTRON MICROSCOPY BY A NON-FREEZING TECHNIQUE. Nature. 1963 Nov 16;200:691–691. doi: 10.1038/200691a0. [DOI] [PubMed] [Google Scholar]
  20. STRAUS W. Colorimetric analysis with N, N-dimethyl-p-phenylenediamine of the uptake of intravenously injected horseradish peroxidase by various tissues of the rat. J Biophys Biochem Cytol. 1958 Sep 25;4(5):541–550. doi: 10.1083/jcb.4.5.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. WEIBEL E. R., PALADE G. E. NEW CYTOPLASMIC COMPONENTS IN ARTERIAL ENDOTHELIA. J Cell Biol. 1964 Oct;23:101–112. doi: 10.1083/jcb.23.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wolff J. Elektronenmikroskopische Untersuchungen über die Vesikulation im Kapillarendothel. Lokalisation, Variation und Fusion der Vesikel. Z Zellforsch Mikrosk Anat. 1966;73(1):143–164. [PubMed] [Google Scholar]
  24. Wolff J., Merker H. J. Ultrastruktur und Bildung von Poren im Endothel von porösen und geschlossenen Kapillaren. Z Zellforsch Mikrosk Anat. 1966;73(2):174–191. [PubMed] [Google Scholar]
  25. Yudilevich D. L., Alvarez O. A. Water, sodium, and thiourea transcapillary diffusion in the dog heart. Am J Physiol. 1967 Aug;213(2):308–314. doi: 10.1152/ajplegacy.1967.213.2.308. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES