Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1969 Apr 1;41(1):91–108. doi: 10.1083/jcb.41.1.91

NUCLEOLAR ORTHOPHOSPHATE IONS

Electron Microscope and Diffraction Studies

Carlos J Tandler 1, Alberto J Solari 1
PMCID: PMC2107744  PMID: 4887231

Abstract

Lead acetate (3–10%, pH between 4.3 and 7.0, alone or containing 2% glutaraldehyde), when used as fixative, has been demonstrated to produce an intracellular microcrystalline precipitate of lead orthophosphate, Pb5(PO4)3OH (lead hydroxyapatite). This confirms earlier work with the light microscope (6). In interphase cells the nucleoli are sharply delimited by the massive lead phosphate precipitate. Some diffuse precipitate is found in the nucleoplasm; it is always delimited by the nuclear membrane. Nucleolar localization of this orthophosphate pool is not a diffusion artifact; the pool is probably in a loosely bound state and is not retained by conventional fixatives. In maize root cells in advanced mitotic stages the lead phosphate crystals are seen distributed throughout the cytoplasm and also relatively concentrated on the late anaphase-early telophase chromosomes. This pool of inorganic phosphate anions may be involved in the mitotic cycle of chromatin condensation, and it may be partially responsible for the absence of mature ribosomes in the nucleolus through the chelation of divalent cations. It is evident that the siver-reducing component detected in the nucleoli of fixed cells (6) is a completely different substance.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BASS R., SALTMAN P. The accumulation of iron by rat liver cell suspensions. Exp Cell Res. 1959 Nov;18:560–572. doi: 10.1016/0014-4827(59)90321-0. [DOI] [PubMed] [Google Scholar]
  2. CHATTERJEE S., DAS GUPTA N. Ultracentrifugal studies on the extracts from proliferating yeast cells. Exp Cell Res. 1963 Mar;30:224–228. doi: 10.1016/0014-4827(63)90229-5. [DOI] [PubMed] [Google Scholar]
  3. DAS N. K. Demonstration of a non-RNA nucleolar fraction by silver staining. Exp Cell Res. 1962 Mar;26:428–431. doi: 10.1016/0014-4827(62)90195-7. [DOI] [PubMed] [Google Scholar]
  4. DAS N. K. Synthetic capacitie of chromosome fragments correlated with their ability to maintain nucleolar material. J Cell Biol. 1962 Oct;15:121–130. doi: 10.1083/jcb.15.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Narayan K. S., Steele W. J., Busch H. Evidence that the granular and fibrillar components of nucleoli contain 28 and 6S RNA, respectively. Exp Cell Res. 1966 Sep;43(2):483–492. doi: 10.1016/0014-4827(66)90075-9. [DOI] [PubMed] [Google Scholar]
  6. Pardee A. B. Purification and properties of a sulfate-binding protein from Salmonella typhimurium. J Biol Chem. 1966 Dec 25;241(24):5886–5892. [PubMed] [Google Scholar]
  7. Penman S., Smith I., Holtzman E. Ribosomal RNA synthesis and processing in a particulate site in the HeLa cell nucleus. Science. 1966 Nov 11;154(3750):786–789. doi: 10.1126/science.154.3750.786. [DOI] [PubMed] [Google Scholar]
  8. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. SOLARI A. J. STRUCTURE OF THE CHROMATIN IN SEA URCHIN SPERM. Proc Natl Acad Sci U S A. 1965 Mar;53:503–511. doi: 10.1073/pnas.53.3.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. STEFFENSEN D. M. Chromosome structure with special reference to the role of metal ions. Int Rev Cytol. 1961;12:163–197. doi: 10.1016/s0074-7696(08)60540-9. [DOI] [PubMed] [Google Scholar]
  11. STUDZINSKI G. P., LOVE R. NUCLEOLAR ORGANELLES SHOWN BY LEAD PRECIPITATION IN UNFIXED CULTURED CELLS. Stain Technol. 1964 Nov;39:397–401. doi: 10.3109/10520296409063312. [DOI] [PubMed] [Google Scholar]
  12. STUDZINSKI G. P. SELECTIVE BINDING OF ZINC BY BASIC PROTEINS OF THE HELA CELL NUCLEOLUS. J Histochem Cytochem. 1965 May-Jun;13:365–375. doi: 10.1177/13.5.365. [DOI] [PubMed] [Google Scholar]
  13. Siebert G., Humphrey G. B. Enzymology of the nucleus. Adv Enzymol Relat Areas Mol Biol. 1965;27:239–288. doi: 10.1002/9780470122723.ch5. [DOI] [PubMed] [Google Scholar]
  14. Studzinski G. P., Reidbord H. E., Love R. Enhancement of the affinity of nucleoli and chromosomes for zinc by treatment with chromic acid. Stain Technol. 1967 Nov;42(6):301–306. doi: 10.3109/10520296709115029. [DOI] [PubMed] [Google Scholar]
  15. TANDLER C. J. A chemically specific technique for the intracellular localization of inorganic phosphate. J Histochem Cytochem. 1957 Sep;5(5):489–499. doi: 10.1177/5.5.489. [DOI] [PubMed] [Google Scholar]
  16. TANDLER C. J. An acid-soluble component of the nucleolus; the cytochemical specificity of the lead acetate reaction. J Histochem Cytochem. 1956 Jul;4(4):331–340. doi: 10.1177/4.4.331. [DOI] [PubMed] [Google Scholar]
  17. TANDLER C. J. The detection of orthophosphate within the cell nucleus. Exp Cell Res. 1961 Nov;25:246–250. doi: 10.1016/0014-4827(61)90276-2. [DOI] [PubMed] [Google Scholar]
  18. TANDLER C. J. The localization of inorganic phosphate in the oöcytes of Bufo arenarum; heterogeneity of the nucleoli. Exp Cell Res. 1958 Apr;14(2):408–413. doi: 10.1016/0014-4827(58)90199-x. [DOI] [PubMed] [Google Scholar]
  19. TANDLER C. J. The localization of intracellular orthophosphate: the role of the nucleoli. Biochim Biophys Acta. 1960 Nov 18;44:536–542. doi: 10.1016/0006-3002(60)91607-3. [DOI] [PubMed] [Google Scholar]
  20. TANDLER C. J. The reaction of nucleoli with ammoniacal silver nitrate in darkness; additional data. J Histochem Cytochem. 1955 May;3(3):196–202. doi: 10.1177/3.3.196. [DOI] [PubMed] [Google Scholar]
  21. TANDLER C. J. The silver-reducing property of the nucleolus and the formation of prenucleolar material during mitosis. Exp Cell Res. 1959 Jun;17(3):560–564. doi: 10.1016/0014-4827(59)90087-4. [DOI] [PubMed] [Google Scholar]
  22. TS'O P. O., SATO C. S. Synthesis of ribonucleic acid in plants. I. Distribution of ribonucleic acid and of protein among subcellular components of pea epicotyls. Exp Cell Res. 1959 May;17(2):227–236. doi: 10.1016/0014-4827(59)90214-9. [DOI] [PubMed] [Google Scholar]
  23. TS'O P. O., VINOGRAD J. Studies on ribosomes from reticulocytes. Biochim Biophys Acta. 1961 Apr 29;49:113–129. doi: 10.1016/0006-3002(61)90875-7. [DOI] [PubMed] [Google Scholar]
  24. Tandler C. J. Detection and origin of nucleolar components: a model for nucleolar RNA function. Natl Cancer Inst Monogr. 1966 Dec;23:181–190. [PubMed] [Google Scholar]
  25. WIESENBERGER E. THE USE OF THE ELECTRON MICROSCOPE IN ANALYTICAL CHEMISTRY. Lab Invest. 1965 Jun;14:1026–1040. [PubMed] [Google Scholar]
  26. Warner J. R., Soeiro R. Nascent ribosomes from HeLa cells. Proc Natl Acad Sci U S A. 1967 Nov;58(5):1984–1990. doi: 10.1073/pnas.58.5.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Whitfield J. F., Perris A. D. Dissolution of the condensed chromatin structures of isolated thymocyte nuclei and the disruption of deoxyribonucleoprotein by inorganic phosphate and a phosphoprotein. Exp Cell Res. 1968 Feb;49(2):359–372. doi: 10.1016/0014-4827(68)90186-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES