Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1969 May 1;41(2):401–423. doi: 10.1083/jcb.41.2.401

THE SUBCELLULAR LOCALIZATION OF CALCIUM ION IN MAMMALIAN MYOCARDIUM

Marianne J Legato 1, Glenn A Langer 1
PMCID: PMC2107747  PMID: 4181965

Abstract

This study was designed to investigate the proposition that subcellular calcium is sequestered in specific sites in mammalian myocardium. 29 functioning dog papillary muscles were fixed through the intact vascular supply by means of osmium tetroxide containing a 2% concentration of potassium pyroantimonate (K2H2Sb2O7·4H2O). Tissue examined in the electron microscope showed a consistent and reproducible localization of the electron-opaque pyroantimonate salts of sodium and calcium to distinct sites in the tissue. Sodium pyroantimonate was found exclusively in the extracellular space and clustered at the sarcolemmal membrane. Calcium pyroantimonate, on the other hand, identified primarily by its susceptibility to removal by chelation with EGTA and EDTA, was consistently found densely concentrated in the lateral sacs of the sarcoplasmic reticulum and over the sarcomeric I bands. M zones were virtually free of precipitate. The implications of these findings with respect to various parameters of muscle function are discussed.

Full Text

The Full Text of this article is available as a PDF (3.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. COSTANTIN L. L., FRANZINI-ARMSTRONG C., PODOLSKY R. J. LOCALIZATION OF CALCIUM-ACCUMULATING STRUCTURES IN STRIATED MUSCLE FIBERS. Science. 1965 Jan 8;147(3654):158–160. doi: 10.1126/science.147.3654.158. [DOI] [PubMed] [Google Scholar]
  2. Ebashi S., Kodama A. A new protein factor promoting aggregation of tropomyosin. J Biochem. 1965 Jul;58(1):107–108. doi: 10.1093/oxfordjournals.jbchem.a128157. [DOI] [PubMed] [Google Scholar]
  3. FAWCETT D. W., SELBY C. C. Observations on the fine structure of the turtle atrium. J Biophys Biochem Cytol. 1958 Jan 25;4(1):63–72. doi: 10.1083/jcb.4.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. HUXLEY A. F., TAYLOR R. E. Local activation of striated muscle fibres. J Physiol. 1958 Dec 30;144(3):426–441. doi: 10.1113/jphysiol.1958.sp006111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. LANGER G. A., BRADY A. J. Calcium flux in the mammalian ventricular myocardium. J Gen Physiol. 1963 Mar;46:703–719. doi: 10.1085/jgp.46.4.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. NELSON D. A., BENSON E. S. On the structural continuities of the transverse tubular system of rabbit and human myocardial cells. J Cell Biol. 1963 Feb;16:297–313. doi: 10.1083/jcb.16.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. NIEDERGERKE R. MOVEMENTS OF CA IN FROG HEART VENTRICLES AT REST AND DURING CONTRACTURES. J Physiol. 1963 Jul;167:515–550. doi: 10.1113/jphysiol.1963.sp007166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. WEBER A., HERZ R., REISS I. On the mechanism of the relaxing effect of fragmented sarcoplasmic reticulum. J Gen Physiol. 1963 Mar;46:679–702. doi: 10.1085/jgp.46.4.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. WEBER A., HERZ R., REISS I. THE REGULATION OF MYOFIBRILLAR ACTIVITY BY CALCIUM. Proc R Soc Lond B Biol Sci. 1964 Oct 27;160:489–501. doi: 10.1098/rspb.1964.0063. [DOI] [PubMed] [Google Scholar]
  10. WINEGRAD S. AUTORADIOGRAPHIC STUDIES OF INTRACELLULAR CALCIUM IN FROG SKELETAL MUSCLE. J Gen Physiol. 1965 Jan;48:455–479. doi: 10.1085/jgp.48.3.455. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES