Abstract
The cells of perfused rabbit collecting tubules swell and the intercellular spaces widen during osmotic flow of water from lumen to bath induced by antidiuretic hormone (ADH). Ouabain had no influence on these changes. In the absence of net water flow intercellular width was unaffected when tubules were swollen in hypotonic external media. Therefore, during ADH-induced flow widening of intercellular spaces is not a consequence of osmotic swelling of a closed intercellular compartment containing trapped solutes, but rather is due to flow of solution through the channel. Direct evidence of intercellular flow was obtained. Nonperfused tubules swollen in hypotonic media were reimmersed in isotonic solution with resultant entry of water into intercellular spaces. The widened spaces gradually collapsed completely. Spaces enlarged in this manner could be emptied more rapidly by increasing the transtubular hydrostatic pressure difference. In electron micrographs a path of exit of sufficient width to accommodate the observed rate of fluid flow was seen at the base of the intercellular channel. It is concluded that the intercellular spaces communicate with the external extracellular fluid and that water, having entered the cells across the luminal plasma membrane in response in ADH, leaves the cells by osmosis across both the lateral and basilar surface membranes.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berridge M. J., Gupta B. L. Fine-structural changes in relation to ion and water transport in the rectal papillae of the blowfly, Calliphora. J Cell Sci. 1967 Mar;2(1):89–112. doi: 10.1242/jcs.2.1.89. [DOI] [PubMed] [Google Scholar]
- Burg M. B., Issaacson L., Grantham J., Orloff J. Electrical properties of isolated perfused rabbit renal tubules. Am J Physiol. 1968 Oct;215(4):788–794. doi: 10.1152/ajplegacy.1968.215.4.788. [DOI] [PubMed] [Google Scholar]
- Burg M., Grantham J., Abramow M., Orloff J. Preparation and study of fragments of single rabbit nephrons. Am J Physiol. 1966 Jun;210(6):1293–1298. doi: 10.1152/ajplegacy.1966.210.6.1293. [DOI] [PubMed] [Google Scholar]
- Ganote C. E., Grantham J. J., Moses H. L., Burg M. B., Orloff J. Ultrastructural studies of vasopressin effect on isolated perfused renal collecting tubules of the rabbit. J Cell Biol. 1968 Feb;36(2):355–367. doi: 10.1083/jcb.36.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grantham J. J., Orloff J. Effect of prostaglandin E1 on the permeability response of the isolated collecting tubule to vasopressin, adenosine 3',5'-monophosphate, and theophylline. J Clin Invest. 1968 May;47(5):1154–1161. doi: 10.1172/JCI105804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karnovsky M. J. The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J Cell Biol. 1967 Oct;35(1):213–236. doi: 10.1083/jcb.35.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaye G. I., Wheeler H. O., Whitlock R. T., Lane N. Fluid transport in the rabbit gallbladder. A combined physiological and electron microscopic study. J Cell Biol. 1966 Aug;30(2):237–268. doi: 10.1083/jcb.30.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PAPPENHEIMER J. R., RENKIN E. M., BORRERO L. M. Filtration, diffusion and molecular sieving through peripheral capillary membranes; a contribution to the pore theory of capillary permeability. Am J Physiol. 1951 Oct;167(1):13–46. doi: 10.1152/ajplegacy.1951.167.1.13. [DOI] [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tormey J. M., Diamond J. M. The ultrastructural route of fluid transport in rabbit gall bladder. J Gen Physiol. 1967 Sep;50(8):2031–2060. doi: 10.1085/jgp.50.8.2031. [DOI] [PMC free article] [PubMed] [Google Scholar]