Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1969 May 1;41(2):378–392. doi: 10.1083/jcb.41.2.378

ISOLATION OF PLASMA MEMBRANE FRAGMENTS FROM HELA CELLS

Charles W Boone 1, Lincoln E Ford 1, Howard E Bond 1, Donald C Stuart 1, Dianne Lorenz 1
PMCID: PMC2107758  PMID: 4239370

Abstract

A method for isolating plasma membrane fragments from HeLa cells is described. The procedure starts with the preparation of cell membrane "ghosts," obtained by gentle rupture of hypotonically swollen cells, evacuation of most of the cell contents by repeated washing, and isolation of the ghosts on a discontinuous sucrose density gradient. The ghosts are then treated by minimal sonication (5 sec) at pH 8.6, which causes the ghost membranes to pinch off into small vesicles but leaves any remaining larger intracellular particulates intact and separable by differential centrifugation. The ghost membrane vesicles are then subjected to isopycnic centrifugation on a 20–50% w/w continuous sucrose gradient in tris-magnesium buffer, pH 8.6. A band of morphologically homogeneous smooth vesicles, derived principally from plasma membrane, is recovered at 30–33% (peak density = 1.137). The plasma membrane fraction contained a Na-K-activated ATPase activity of 1.5 µmole Pi/hr per mg, 3% RNA, and 13.8% of the NADH-cytochrome c reductase activity of a heavier fraction from the same gradient which contained mitochondria and rough endoplasmic vesicles. The plasma membranes of viable HeLa cells were marked with 125I-labeled horse antibody and followed through the isolation procedure. The specific antibody binding of the plasma membrane vesicle fraction was increased 49-fold over that of the original whole cells.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABERCROMBIE M., HEAYSMAN J. E., KARTHAUSER H. M. Social behaviour of cells in tissue culture. III. Mutual influence of sarcoma cells and fibroblasts. Exp Cell Res. 1957 Oct;13(2):276–291. doi: 10.1016/0014-4827(57)90007-1. [DOI] [PubMed] [Google Scholar]
  2. Carey F. J., Pettengill O. S. A time-lapse study of effects of anticellular antibody on membrane mobility and phagocytic activity of HeLa cells. J Cell Biol. 1967 Jun;33(3):709–712. doi: 10.1083/jcb.33.3.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DEHAAN R. L., EBERT J. D. MORPHOGENESIS. Annu Rev Physiol. 1964;26:15–46. doi: 10.1146/annurev.ph.26.030164.000311. [DOI] [PubMed] [Google Scholar]
  4. FLECK A., MUNRO H. N. The precision of ultraviolet absorption measurements in the Schmidt-Thannhauser procedure for nucleic acid estimation. Biochim Biophys Acta. 1962 May 14;55:571–583. doi: 10.1016/0006-3002(62)90836-3. [DOI] [PubMed] [Google Scholar]
  5. GROBSTEIN C. Cell contact in relation to embryonic induction. Exp Cell Res. 1961;Suppl 8:234–245. doi: 10.1016/0014-4827(61)90352-4. [DOI] [PubMed] [Google Scholar]
  6. KAMAT V. B., WALLACH D. F. SEPARATION AND PARTIAL PURIFICATION OF PLASMA-MEMBRANE FRAGMENTS FROM EHRLICH ASCITES CARCINOMA MICROSOMES. Science. 1965 Jun 4;148(3675):1343–1345. doi: 10.1126/science.148.3675.1343. [DOI] [PubMed] [Google Scholar]
  7. Katz A. I., Epstein F. H. Physiologic role of sodium-potassium-activated adenosine triphosphatase in the transport of cations across biologic membranes. N Engl J Med. 1968 Feb 1;278(5):253–261. doi: 10.1056/NEJM196802012780506. [DOI] [PubMed] [Google Scholar]
  8. LEVINE E. M., BECKER Y., BOONE C. W., EAGLE H. CONTACT INHIBITION, MACROMOLECULAR SYNTHESIS, AND POLYRIBOSOMES IN CULTURED HUMAN DIPLOID FIBROBLASTS. Proc Natl Acad Sci U S A. 1965 Feb;53:350–356. doi: 10.1073/pnas.53.2.350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. PALADE G. E., SIEKEVITZ P. Liver microsomes; an integrated morphological and biochemical study. J Biophys Biochem Cytol. 1956 Mar 25;2(2):171–200. doi: 10.1083/jcb.2.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ryser H. J. Uptake of protein by mammalian cells: an underdeveloped area. The penetration of foreign proteins into mammalian cells can be measured and their functions explored. Science. 1968 Jan 26;159(3813):390–396. doi: 10.1126/science.159.3813.390. [DOI] [PubMed] [Google Scholar]
  12. Tanigaki N., Yagi Y., Pressman D. Application of the paired label radioantibody technique to tissue sections and cell smears. J Immunol. 1967 Feb;98(2):274–280. [PubMed] [Google Scholar]
  13. WALLACH D. F., KAMAT V. B. PLASMA AND CYTOPLASMIC MEMBRANE FRAGMENTS FROM EHRLICH ASCITES CARCINOMA. Proc Natl Acad Sci U S A. 1964 Sep;52:721–728. doi: 10.1073/pnas.52.3.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. WALLACH D. F., ULLREY D. STUDIES ON THE SURFACE AND CYTOPLASMIC MEMBRANES OF EHRLICH ASCITES CARCINOMA CELLS. II. ALKALI-CATION-ACTIVATED ADENOSINE TRIPHOSPHATE HYDROLYSIS IN A MICROSOMAL MEMBRANE FRACTION. Biochim Biophys Acta. 1964 Nov 29;88:620–629. doi: 10.1016/0926-6577(64)90104-4. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES