Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1969 May 1;41(2):431–440. doi: 10.1083/jcb.41.2.431

STUDIES ON CHLOROPLAST DEVELOPMENT AND REPLICATION IN EUGLENA

I. Vitamin B12 and Chloroplast Replication

Edgar F Carell 1
PMCID: PMC2107772  PMID: 5783865

Abstract

When Euglena gracilis is grown under vitamin B12 deficiency conditions, the amount of protein and of chlorophyll per cell increase with decrease of B12 in the medium and consequently in the cell. The increase in cell protein is proportional to and precedes an increase in the number of chloroplasts per cell. This replication of the chloroplasts under deficiency conditions is not accompanied by nuclear or cell division. It is concluded that chloroplast replication in Euglena gracilis is independent of nuclear and cellular replication, at least under B12 deficiency conditions. We established a graph of the growth of Euglena under different concentrations of vitamin B12 added to the growth medium, which permitted us to calculate that at least 22,000 molecules of vitamin B12 per cell are required to give normal growth.

Full Text

The Full Text of this article is available as a PDF (575.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beck W. S., Hardy J. Requirement of ribonucleotide reductase for cobamide coenzyme, a product of ribosomal activity. Proc Natl Acad Sci U S A. 1965 Jul;54(1):286–293. doi: 10.1073/pnas.54.1.286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blakley R. L., Barker H. A. Cobamide stimulation of the reduction of ribotides to deoxyribotides in Lactobacillus leichmannii. Biochem Biophys Res Commun. 1964 Jul 27;16(5):391–397. doi: 10.1016/0006-291x(64)90363-8. [DOI] [PubMed] [Google Scholar]
  3. COHEN S. S., BARNER H. D. Studies on the induction of thymine deficiency and on the effects of thymine and thymidine analogues in Escherichia coli. J Bacteriol. 1956 May;71(5):588–597. doi: 10.1128/jb.71.5.588-597.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cohen S. S., Barner H. D. STUDIES ON UNBALANCED GROWTH IN ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1954 Oct;40(10):885–893. doi: 10.1073/pnas.40.10.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. EPSTEIN H. T., BOY DE LA TOUR E., SCHIFF J. A. Fluorescence studies of chloroplast development in Euglena. Nature. 1960 Mar 19;185:825–826. doi: 10.1038/185825a0. [DOI] [PubMed] [Google Scholar]
  6. EPSTEIN S. S., WEISS J. B., CAUSELEY D., BUSH P. Influence of vitamin B12 on the size and growth of Euglena gracilis. J Protozool. 1962 Aug;9:336–339. doi: 10.1111/j.1550-7408.1962.tb02630.x. [DOI] [PubMed] [Google Scholar]
  7. Epstein H. T., Allaway E. Properties of selectively starved euglena. Biochim Biophys Acta. 1967 Jun 20;142(1):195–207. doi: 10.1016/0005-2787(67)90527-8. [DOI] [PubMed] [Google Scholar]
  8. Granick S., Gibor A. The DNA of chloroplasts, mitochondria and centrioles. Prog Nucleic Acid Res Mol Biol. 1967;6:143–186. doi: 10.1016/s0079-6603(08)60526-7. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Lark C. Effect of the methionine analogs, ethionine and norleucine, on DNA synthesis in Escherichia coli 15T. J Mol Biol. 1968 Feb 14;31(3):401–414. doi: 10.1016/0022-2836(68)90417-8. [DOI] [PubMed] [Google Scholar]
  11. Price C. A., Vallee B. L. Euglena gracilis, A Test Organism for Study of Zinc. Plant Physiol. 1962 May;37(3):428–433. doi: 10.1104/pp.37.3.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Walerych W. S., Venkataraman S., Johnson B. C. The methylation of transfer RNA by methyl cobamide. Biochem Biophys Res Commun. 1966 May 25;23(4):368–374. doi: 10.1016/0006-291x(66)90735-2. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES