Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1970 Jan 1;44(1):1–19. doi: 10.1083/jcb.44.1.1

A STUDY OF THE T SYSTEM IN RAT HEART

W G Forssmann 1, L Girardier 1
PMCID: PMC2107783  PMID: 4901374

Abstract

The technique of extracellular space tracing with horseradish peroxidase is adapted for labeling the transverse tubular system (T system) in rat heart. In rat ventricular muscle the T system shows extensive branching and remarkable tortuosity. The T system can only be defined operationally, since it does not display specific morphological features throughout its entire structure. Owing to branching of the T system, a sizable proportion of the apposition between the T system and L system (or closed system) occurs at the level of longitudinal branches of the T system and is not restricted to the Z line region. The regions of apposition between the T system and L system are analyzed in rat ventricular muscle and skeletal muscle (diaphragm) and compared with the intercellular tight junctions (nexuses) of heart muscle by the use of a photometric method. The over-all thickness of the nexus is significantly smaller than that of T-L junctions in both cardiac and skeletal muscles. The thickness of the membranes of the T and L systems are not significantly different in the two muscles, but the gap between both membranes is larger in the heart. In atrial muscle the following two types of cells are found: (a) those cells with a well-developed T system in which the tubular diameter is quite uniform and the orientation predominantly longitudinal and, (b) cells with no T system, but with a well-developed L system. Atrial cells possessing a T system are richly provided with specific granules and show little micropinocytotic activity, whereas cells devoid of T system show intense micropinocytotic activity and few specific granules. The possible functional implications of these findings are discussed.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. April E., Brandt P. W., Reuben J. P., Grundfest H. Muscle contraction: the effect of ionic strength. Nature. 1968 Oct 12;220(5163):182–184. doi: 10.1038/220182a0. [DOI] [PubMed] [Google Scholar]
  2. DAEMS W. T., VANDERPLOEG M., PERSIJN J. P., VANDUIJN P. DEMONSTRATION WITH THE ELECTRON MICROSCOPE OF INJECTED PEROXIDASE IN RAT LIVER CELLS. Z Zellforch Microsk Anat Histochem. 1964 Apr 10;158:561–564. doi: 10.1007/BF00736637. [DOI] [PubMed] [Google Scholar]
  3. Dreifuss J. J., Girardier L. Etude de la propagation de l'excitation dans le ventricule de rat au moyen de solutions hypertoniques. Pflugers Arch Gesamte Physiol Menschen Tiere. 1966;292(1):13–33. [PubMed] [Google Scholar]
  4. FANBURG B., FINKEL R. M., MARTONOSI A. THE ROLE OF CALCIUM IN THE MECHANISM OF RELAXATION OF CARDIAC MUSCLE. J Biol Chem. 1964 Jul;239:2298–2305. [PubMed] [Google Scholar]
  5. FANBURG B., GERGELY J. STUDIES ON ADENOSINE TRIPHOSPHATE-SUPPORTED CALCIUM ACCUMULATION BY CARDIAC SUBCELLULAR PARTICLES. J Biol Chem. 1965 Jun;240:2721–2728. [PubMed] [Google Scholar]
  6. Forssmann W. G., Girardier L. Untersuchungen zur Ultrastruktur des Rattenherzmuskels mit besonderer Berücksichtigung des sarcoplasmatischen Retikulums. Z Zellforsch Mikrosk Anat. 1966;72(2):249–275. [PubMed] [Google Scholar]
  7. GIRARDIER L., DREIFUSS J. J., HAENNI B., PETROVICI A. R'EPONSE DU TISSU MYOCARDIQUE DE RAT IN VITRO 'A UNE AUGMENTATION DE LA PRESSION OSMOTIQUE DU MILIEU EXTERNE. Pathol Microbiol (Basel) 1964;27:16–30. [PubMed] [Google Scholar]
  8. GIRARDIER L., REUBEN J. P., BRANDT P. W., GRUNDFEST H. EVIDENCE FOR ANION-PERMSELECTIVE MEMBRANE IN CRAYFISH MUSCLE FIBERS AND ITS POSSIBLE ROLE IN EXCITATION-CONTRACTION COUPLING. J Gen Physiol. 1963 Sep;47:189–214. doi: 10.1085/jgp.47.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Girardier L., Dreifuss J. J., Forssmann W. G. Micropinocytose de ferritine dans les cellules myocardiques de tortue et de rat. Acta Anat (Basel) 1967;68(2):251–257. [PubMed] [Google Scholar]
  10. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  11. HUXLEY A. F. Local activation of muscle. Ann N Y Acad Sci. 1959 Aug 28;81:446–452. doi: 10.1111/j.1749-6632.1959.tb49326.x. [DOI] [PubMed] [Google Scholar]
  12. HUXLEY A. F. MUSCLE. Annu Rev Physiol. 1964;26:131–152. doi: 10.1146/annurev.ph.26.030164.001023. [DOI] [PubMed] [Google Scholar]
  13. HUXLEY A. F., TAYLOR R. E. Function of Krause's membrane. Nature. 1955 Dec 3;176(4492):1068–1068. doi: 10.1038/1761068a0. [DOI] [PubMed] [Google Scholar]
  14. HUXLEY A. F., TAYLOR R. E. Local activation of striated muscle fibres. J Physiol. 1958 Dec 30;144(3):426–441. doi: 10.1113/jphysiol.1958.sp006111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. JAMIESON J. D., PALADE G. E. SPECIFIC GRANULES IN ATRIAL MUSCLE CELLS. J Cell Biol. 1964 Oct;23:151–172. doi: 10.1083/jcb.23.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. KARNOVSKY M. J. Simple methods for "staining with lead" at high pH in electron microscopy. J Biophys Biochem Cytol. 1961 Dec;11:729–732. doi: 10.1083/jcb.11.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Karnovsky M. J. The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J Cell Biol. 1967 Oct;35(1):213–236. doi: 10.1083/jcb.35.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. MITSUI T. Application of the electron microscope to the cytochemical peroxidase reaction in salamander leukocytes. J Biophys Biochem Cytol. 1960 Apr;7:251–260. doi: 10.1083/jcb.7.2.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. MOORE D. H., RUSKA H. Electron microscope study of mammalian cardiac muscle cells. J Biophys Biochem Cytol. 1957 Mar 25;3(2):261–268. doi: 10.1083/jcb.3.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Müller P. Lokale Kontraktionsauslösung am Herzmuskel. Helv Physiol Pharmacol Acta. 1966 Nov;68:C106–C108. [PubMed] [Google Scholar]
  22. NELSON D. A., BENSON E. S. On the structural continuities of the transverse tubular system of rabbit and human myocardial cells. J Cell Biol. 1963 Feb;16:297–313. doi: 10.1083/jcb.16.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. PORTER K. R., PALADE G. E. Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells. J Biophys Biochem Cytol. 1957 Mar 25;3(2):269–300. doi: 10.1083/jcb.3.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Page E. Tubular systems in Purkinje cells of the cat heart. J Ultrastruct Res. 1967 Jan;17(1):72–83. doi: 10.1016/s0022-5320(67)80021-2. [DOI] [PubMed] [Google Scholar]
  25. Reuben J. P., Brandt P. W., Garcia H., Grundfest H. Excitation-contraction coupling in crayfish. Am Zool. 1967 Aug;7(3):623–645. doi: 10.1093/icb/7.3.623. [DOI] [PubMed] [Google Scholar]
  26. Revel J. P., Karnovsky M. J. Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J Cell Biol. 1967 Jun;33(3):C7–C12. doi: 10.1083/jcb.33.3.c7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. SIMPSON F. O., OERTELIS S. J. The fine structure of sheep myocardial cells; sarcolemmal invaginations and the transverse tubular system. J Cell Biol. 1962 Jan;12:91–100. doi: 10.1083/jcb.12.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. SIMPSON F. O. THE TRANSVERSE TUBULAR SYSTEM IN MAMMALIAN MYOCARDIAL CELLS. Am J Anat. 1965 Jul;117:1–17. doi: 10.1002/aja.1001170102. [DOI] [PubMed] [Google Scholar]
  29. Sandow A. Excitation-contraction coupling in skeletal muscle. Pharmacol Rev. 1965 Sep;17(3):265–320. [PubMed] [Google Scholar]
  30. Simpson F. O., Rayns D. G. The relationship between the transverse tubular system and other tubules at the Z disc levels of myocardial cells in the ferret. Am J Anat. 1968 Mar;122(2):193–207. doi: 10.1002/aja.1001220203. [DOI] [PubMed] [Google Scholar]
  31. Smith D. S. The organization and function of the sarcoplasmic reticulum and T-system of muscle cells. Prog Biophys Mol Biol. 1966;16:107–142. doi: 10.1016/0079-6107(66)90004-6. [DOI] [PubMed] [Google Scholar]
  32. Sommer J. R., Johnson E. A. Cardiac muscle. A comparative study of Purkinje fibers and ventricular fibers. J Cell Biol. 1968 Mar;36(3):497–526. doi: 10.1083/jcb.36.3.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sommer J. R., Johnson E. A. Purkinje fibers of the heart examined with the peroxidase reaction. J Cell Biol. 1968 May;37(2):570–574. doi: 10.1083/jcb.37.2.570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. WEBER A., HERZ R., REISS I. THE REGULATION OF MYOFIBRILLAR ACTIVITY BY CALCIUM. Proc R Soc Lond B Biol Sci. 1964 Oct 27;160:489–501. doi: 10.1098/rspb.1964.0063. [DOI] [PubMed] [Google Scholar]
  35. Wilkie D. R. Muscle. Annu Rev Physiol. 1966;28:17–38. doi: 10.1146/annurev.ph.28.030166.000313. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES