Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1970 Jan 1;44(1):151–171. doi: 10.1083/jcb.44.1.151

BRUSH BORDER DEVELOPMENT IN THE INTESTINAL ABSORPTIVE CELLS OF XENOPUS DURING METAMORPHOSIS

Mary A Bonneville 1, Melvyn Weinstock 1
PMCID: PMC2107785  PMID: 4187705

Abstract

The differentiation of the brush border which makes up the apical free surface of intestinal absorptive cells has been studied by electron microscopy. Specimens of Xenopus small intestine were fixed at various stages during metamorphosis, the time when a new intestinal epithelium forms. The interpretation of details described herein emphasizes the role of "surface-forming" vesicles. These vesicles are thought to provide membrane both for the initial expansion of the apical surface and for the later elongation of the microvilli. The latter are believed to be "molded" around filamentous cores that appear early in differentiation. The cores are attached to the apical membrane and extend vertically into the supranuclear cytoplasm. This interpretation rests chiefly on (a) the resemblance, both in morphology and in staining properties with colloidal thorium, between the membrane that limits the vesicles and that which limits the microvilli and (b) the distribution and time of appearance of the vesicles with respect to development of the microvilli. According to this view, the specific properties of surface membrane reside in preformed units that arise within the supranuclear cytoplasm. This morphogenetic process probably involves participation of the Golgi region as the site where the complex macromolecular architecture of the cell surface is assembled.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASHWORTH C. T., LUIBEL F. J., STEWART S. C. The fine structural localization of adenosine triphosphatase in the small intestine, kidney, and liver of the rat. J Cell Biol. 1963 Apr;17:1–18. doi: 10.1083/jcb.17.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BONNEVILLE M. A. FINE STRUCTURAL CHANGES IN THE INTESTINAL EPITHELIUM OF THE BULLFROG DURING METAMORPHOSIS. J Cell Biol. 1963 Sep;18:579–597. doi: 10.1083/jcb.18.3.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BROWN A. L., Jr Microvilli of the human jejunal epithelial cell. J Cell Biol. 1962 Mar;12:623–627. doi: 10.1083/jcb.12.3.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cardell R. R., Jr, Badenhausen S., Porter K. R. Intestinal triglyceride absorption in the rat. An electron microscopical study. J Cell Biol. 1967 Jul;34(1):123–155. doi: 10.1083/jcb.34.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Friend D. S., Farquhar M. G. Functions of coated vesicles during protein absorption in the rat vas deferens. J Cell Biol. 1967 Nov;35(2):357–376. doi: 10.1083/jcb.35.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GRANGER B., BAKER R. F. Electron microscope investigation of the striated border of intestinal epithelium. Anat Rec. 1950 Aug;107(4):423–441. doi: 10.1002/ar.1091070409. [DOI] [PubMed] [Google Scholar]
  7. Hugon J., Borgers M. Ultrastructural localization of alkaline phosphatase activity in the absorbing cells of the duodenum of mouse. J Histochem Cytochem. 1966 Sep;14(9):629–640. doi: 10.1177/14.9.629. [DOI] [PubMed] [Google Scholar]
  8. Ito S. The enteric surface coat on cat intestinal microvilli. J Cell Biol. 1965 Dec;27(3):475–491. doi: 10.1083/jcb.27.3.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. MCNABB J. D., SANDBORN E. FILAMENTS IN THE MICROVILLOUS BORDER OF INTESTINAL CELLS. J Cell Biol. 1964 Sep;22:701–704. doi: 10.1083/jcb.22.3.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. MILLINGTON P. F. COMPARISON OF THE THICKNESSES OF THE LATERAL WALL MEMBRANE AND THE MICROVILLUS MEMBRANE OF INTESTINAL EPITHELIAL CELLS FROM RAT AND MOUSE. J Cell Biol. 1964 Mar;20:514–517. doi: 10.1083/jcb.20.3.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mukherjee T. M., Williams A. W. A comparative study of the ultrastructure of microvilli in the epithelium of small and large intestine of mice. J Cell Biol. 1967 Aug;34(2):447–461. doi: 10.1083/jcb.34.2.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Neutra M., Leblond C. P. Radioautographic comparison of the uptake of galactose-H and glucose-H3 in the golgi region of various cells secreting glycoproteins or mucopolysaccharides. J Cell Biol. 1966 Jul;30(1):137–150. doi: 10.1083/jcb.30.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. OVERTON J., SHOUP J. FINE STRUCTURE OF CELL SURFACE SPECIALIZATIONS IN THE MATURING DUODENAL MUCOSA OF THE CHICK. J Cell Biol. 1964 Apr;21:75–85. doi: 10.1083/jcb.21.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Overton J. Fine structure of the free cell surface in developing mouse intestinal mucosa. J Exp Zool. 1965 Jul;159(2):195–201. doi: 10.1002/jez.1401590205. [DOI] [PubMed] [Google Scholar]
  16. PALAY S. L., KARLIN L. J. An electron microscopic study of the intestinal villus. I. The fasting animal. J Biophys Biochem Cytol. 1959 May 25;5(3):363–372. doi: 10.1083/jcb.5.3.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. ROSENBLUTH J., WISSIG S. L. THE DISTRIBUTION OF EXOGENOUS FERRITIN IN TOAD SPINAL GANGLIA AND THE MECHANISM OF ITS UPTAKE BY NEURONS. J Cell Biol. 1964 Nov;23:307–325. doi: 10.1083/jcb.23.2.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rambourg A., Hernandez W., Leblond C. P. Detection of complex carbohydrates in the Golgi apparatus of rat cells. J Cell Biol. 1969 Feb;40(2):395–414. doi: 10.1083/jcb.40.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rambourg A., Leblond C. P. Electron microscope observations on the carbohydrate-rich cell coat present at the surface of cells in the rat. J Cell Biol. 1967 Jan;32(1):27–53. doi: 10.1083/jcb.32.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SABATINI D. D., BENSCH K., BARRNETT R. J. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol. 1963 Apr;17:19–58. doi: 10.1083/jcb.17.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. SENIOR J. R. INTESTINAL ABSORPTION OF FATS. J Lipid Res. 1964 Oct;5:495–521. [PubMed] [Google Scholar]
  23. SPICER S. S. DIAMINE METHODS FOR DIFFERENTIALING MUCOSUBSTANCES HISTOCHEMICALLY. J Histochem Cytochem. 1965 Mar;13:211–234. doi: 10.1177/13.3.211. [DOI] [PubMed] [Google Scholar]
  24. TRIER J. S. STUDIES ON SMALL INTESTINAL CRYPT EPITHELIUM. I. THE FINE STRUCTURE OF THE CRYPT EPITHELIUM OF THE PROXIMAL SMALL INTESTINE OF FASTING HUMANS. J Cell Biol. 1963 Sep;18:599–620. doi: 10.1083/jcb.18.3.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wetzel M. G., Wetzel B. K., Spicer S. S. Ultrastructural localization of acid mucosubstances in the mouse colon with iron-containing stains. J Cell Biol. 1966 Aug;30(2):299–315. doi: 10.1083/jcb.30.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES