Abstract
A sheath consisting of filaments 50–70 A in diameter has been demonstrated in association with the expanded, leading margins of the cleavage furrow in unilaterally and symmetrically cleaving eggs of a jellyfish and a polychaete worm, respectively. The observations suggest that the filament system might provide a structural basis for the existence of the contractile gel that, according to a hypothesis by Marsland and Landau, accomplishes cleavage. The filamentous sheath is present only in the furrow region and is arranged in an arcuate manner in unilaterally cleaving eggs and circumferentially in symmetrical cleavage. The filaments appear to be of finite length, and a number of them must overlap to span the length of the furrow. Contraction may be accomplished if the filaments slide relative to each other. However, contraction per se was experimentally not demonstrated in the studied systems. The disappearance of microvilli and the merocrine type secretion of mucoid droplets at the interdigitating or "spinning" membrane region of unilateral cleavage suggest that the unfolding of a pleated membrane and the insertion of intracytoplasmic membranes might contribute, at least in part, to the necessary extra cell membrane.
Full Text
The Full Text of this article is available as a PDF (2.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnold J. M. Cleavage furrow formation in a telolecithal egg (Loligo pealii). I. Filaments in early furrow formation. J Cell Biol. 1969 Jun;41(3):894–904. doi: 10.1083/jcb.41.3.894. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BAKER P. C. FINE STRUCTURE AND MORPHOGENIC MOVEMENTS IN THE GASTRULA OF THE TREEFROG, HYLA REGILLA. J Cell Biol. 1965 Jan;24:95–116. doi: 10.1083/jcb.24.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker P. C., Schroeder T. E. Cytoplasmic filaments and morphogenetic movement in the amphibian neural tube. Dev Biol. 1967 May;15(5):432–450. doi: 10.1016/0012-1606(67)90036-x. [DOI] [PubMed] [Google Scholar]
- Buckley I. K., Porter K. R. Cytoplasmic fibrils in living cultured cells. A light and electron microscope study. Protoplasma. 1967;64(4):349–380. doi: 10.1007/BF01666538. [DOI] [PubMed] [Google Scholar]
- Cloney R. A. Cytoplasmic filaments and cell movements: epidermal cells during ascidian metamorphosis. J Ultrastruct Res. 1966 Feb;14(3):300–328. doi: 10.1016/s0022-5320(66)80051-5. [DOI] [PubMed] [Google Scholar]
- Cloney R. A., Florey E. Ultrastructure of cephalopod chromatophore organs. Z Zellforsch Mikrosk Anat. 1968;89(2):250–280. doi: 10.1007/BF00347297. [DOI] [PubMed] [Google Scholar]
- DAN K. Cyto-embryology of echinoderms and amphibia. Int Rev Cytol. 1960;9:321–367. doi: 10.1016/s0074-7696(08)62751-5. [DOI] [PubMed] [Google Scholar]
- Dougherty W. J., Lee M. M. Light and electron microscope studies of smooth endoplasmic reticulum in dividing rat hepatic cells. J Ultrastruct Res. 1967 Jul;19(1):200–220. doi: 10.1016/s0022-5320(67)80069-8. [DOI] [PubMed] [Google Scholar]
- HIRAMOTO Y. FURTHER STUDIES ON CELL DIVISION WITHOUT MITOTIC APPARATUS IN SEA URCHIN EGGS. J Cell Biol. 1965 Apr;25:SUPPL–SUPPL:167. doi: 10.1083/jcb.25.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito S. The enteric surface coat on cat intestinal microvilli. J Cell Biol. 1965 Dec;27(3):475–491. doi: 10.1083/jcb.27.3.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LINDEGREN C. C. The chromone theory of mitosis. Can J Genet Cytol. 1962 Dec;4:426–439. doi: 10.1139/g62-053. [DOI] [PubMed] [Google Scholar]
- LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MCNABB J. D., SANDBORN E. FILAMENTS IN THE MICROVILLOUS BORDER OF INTESTINAL CELLS. J Cell Biol. 1964 Sep;22:701–704. doi: 10.1083/jcb.22.3.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MERCER E. H., WOLPERT L. Electron microscopy of cleaving sea urchin eggs. Exp Cell Res. 1958 Jun;14(3):629–632. doi: 10.1016/0014-4827(58)90171-x. [DOI] [PubMed] [Google Scholar]
- Nagai R., Rebhun L. I. Cytoplasmic microfilaments in streaming Nitella cells. J Ultrastruct Res. 1966 Mar;14(5):571–589. doi: 10.1016/s0022-5320(66)80083-7. [DOI] [PubMed] [Google Scholar]
- Prothero J. W., Rockafeller R. T. A model of cell cleavage. Biophys J. 2008 Dec 31;7(6):659–673. doi: 10.1016/S0006-3495(67)86615-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RAPPAPORT R., EBSTEIN R. P. DURATION OF STIMULUS AND LATENT PERIODS PRECEDING FURROW FORMATION IN SAND DOLLAR EGGS. J Exp Zool. 1965 Apr;158:373–382. doi: 10.1002/jez.1401580311. [DOI] [PubMed] [Google Scholar]
- ROBBINS E., GONATAS N. K. THE ULTRASTRUCTURE OF A MAMMALIAN CELL DURING THE MITOTIC CYCLE. J Cell Biol. 1964 Jun;21:429–463. doi: 10.1083/jcb.21.3.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rappaport R. Experiments concerning the cleavage furrow in invertebrate eggs. J Exp Zool. 1966 Feb;161(1):1–8. doi: 10.1002/jez.1401610102. [DOI] [PubMed] [Google Scholar]
- Rappaport R. Geometrical relations of the cleavage stimulus in invertebrate eggs. J Theor Biol. 1965 Jul;9(1):51–66. doi: 10.1016/0022-5193(65)90056-1. [DOI] [PubMed] [Google Scholar]
- Sakai H. Contractile properties of protein threads from sea urchin eggs in relation to cell division. Int Rev Cytol. 1968;23:89–112. doi: 10.1016/s0074-7696(08)60270-3. [DOI] [PubMed] [Google Scholar]
- Schroeder T. E. Cytokinesis: filaments in the cleavage furrow. Exp Cell Res. 1968 Oct;53(1):272–276. doi: 10.1016/0014-4827(68)90373-x. [DOI] [PubMed] [Google Scholar]
- Tahmisian T. N., Devine R. L., Wright B. J. The ultrastructure of the plasma membrane at the division furrow of grasshopper germ cells. Z Zellforsch Mikrosk Anat. 1967;77(3):316–324. doi: 10.1007/BF00339237. [DOI] [PubMed] [Google Scholar]
- Tilney L. G., Marsland D. A fine structural analysis of cleavage induction and furrowing in the eggs of Arbacia punctulata. J Cell Biol. 1969 Jul;42(1):170–184. doi: 10.1083/jcb.42.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wessells N. K., Evans J. Ultrastructural studies of early morphogenesis and cytodifferentiation in the embryonic mammalian pancreas. Dev Biol. 1968 Apr;17(4):413–446. doi: 10.1016/0012-1606(68)90073-0. [DOI] [PubMed] [Google Scholar]
- Wohlman A., Allen R. D. Structural organization associated with pseudopod extension and contraction during cell locomotion in Difflugia. J Cell Sci. 1968 Mar;3(1):105–114. doi: 10.1242/jcs.3.1.105. [DOI] [PubMed] [Google Scholar]