Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1969 Dec 1;43(3):480–505. doi: 10.1083/jcb.43.3.480

CONFIGURATION OF A FILAMENTOUS NETWORK IN THE AXOPLASM OF THE SQUID (LOLIGO PEALII L.) GIANT NERVE FIBER

J Metuzals 1
PMCID: PMC2107795  PMID: 5351403

Abstract

High-resolution electron microscopy is integrated with physicochemical methods in order to investigate the following preparations of the giant nerve fibers of the squid (Loligo pealii L.): (1) Thin sections of fibers fixed in four different fixatives; (2) fresh axoplasm stained negatively in solutions of different pH and composition; (3) chemically isolated threadlike elements of the axoplasm. A continuous, three-dimensional network can be identified in all these preparations of the axoplasm. The network is composed of coiled or looped unit-filaments ∼30 A wide. The unit-filaments are intercoiled in strands ∼ 70–250 A wide. The strands are oriented longitudinally in the axoplasm, often having a sinuous course and cross-associations. Microtubules are surrounded by intercoiled unit-filaments and filamentous strands. Calcium ions cause loosening and disintegration of the network configuration. UO2 ++ ions of a 1% uranyl acetate solution at pH 4.4 display a specific affinity for filamentous protein structures of the squid giant nerve fiber axoplasm, segregating the filamentous elements of the axoplasm in a coiled, threadlike preparation. The uranyl ions combine probably with the carboxyl groups of the main amino acids of the protein—glutamic and aspartic acids. It is proposed that by coiling/decoiling and folding/unfolding of the unit-filaments, shifts in physicochemical properties of the axoplasm are maintained.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. COGGESHALL R. E., FAWCETT D. W. THE FINE STRUCTURE OF THE CENTRAL NERVOUS SYSTEM OF THE LEECH, HIRUDO MEDICINALIS. J Neurophysiol. 1964 Mar;27:229–289. doi: 10.1152/jn.1964.27.2.229. [DOI] [PubMed] [Google Scholar]
  3. Cohen L. B., Keynes R. D., Hille B. Light scattering and birefringence changes during nerve activity. Nature. 1968 May 4;218(5140):438–441. doi: 10.1038/218438a0. [DOI] [PubMed] [Google Scholar]
  4. DAVISON P. F., TAYLOR E. W. Physical-chemical studies of proteins of squid nerve axoplasm, with special reference to the axon fibrous protein. J Gen Physiol. 1960 Mar;43:801–823. doi: 10.1085/jgp.43.4.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DIRR K., DECKER P., BECKER H. Uber Serumeiweissfraktionierung mit Uranylacetat. Hoppe Seylers Z Physiol Chem. 1957;307(2-6):97–102. [PubMed] [Google Scholar]
  6. GIBBONS I. R., GRIMSTONE A. V. On flagellar structure in certain flagellates. J Biophys Biochem Cytol. 1960 Jul;7:697–716. doi: 10.1083/jcb.7.4.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GIBBONS I. R. The relationship between the fine structure and direction of beat in gill cilia of a lamellibranch mollusc. J Biophys Biochem Cytol. 1961 Oct;11:179–205. doi: 10.1083/jcb.11.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GRAY E. G., GUILLERY R. W. AN ELECTRON MICROSCOPICAL STUDY OF THE VENTRAL NERVE CORD OF THE LEECH. Z Zellforsch Mikrosk Anat. 1963 Sep 18;60:826–849. doi: 10.1007/BF00339095. [DOI] [PubMed] [Google Scholar]
  9. HODGKIN A. L., KATZ B. The effect of calcium on the axoplasm of giant nerve fibers. J Exp Biol. 1949 Oct;26(3):292-4, pl. doi: 10.1242/jeb.26.3.292. [DOI] [PubMed] [Google Scholar]
  10. HODGKIN A. L., KEYNES R. D. Experiments on the injection of substances into squid giant axons by means of a microsyringe. J Physiol. 1956 Mar 28;131(3):592–616. doi: 10.1113/jphysiol.1956.sp005485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HODGKIN A. L., KEYNES R. D. Movements of labelled calcium in squid giant axons. J Physiol. 1957 Sep 30;138(2):253–281. doi: 10.1113/jphysiol.1957.sp005850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KEYNES R. D., LEWIS P. R. The intracellular calcium contents of some invertebrate nerves. J Physiol. 1956 Nov 28;134(2):399–407. doi: 10.1113/jphysiol.1956.sp005652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LING G. N. The interpretation of selective ionic permeability and cellular potentials in terms of the fixed charge induction hypothesis. J Gen Physiol. 1960 May;43:149–174. doi: 10.1085/jgp.43.5.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LUXORO M., ROJAS E., WITTIG E. Effect of azide and Ca ion on the reversible changes of protein configuration in stimulated nerves. J Gen Physiol. 1963 May;46:1109–1121. doi: 10.1085/jgp.46.5.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MAXFIELD M., HARTLEY R. W., Jr Dissociation of the fibrous protein of nerve. Biochim Biophys Acta. 1957 Apr;24(1):83–87. doi: 10.1016/0006-3002(57)90149-x. [DOI] [PubMed] [Google Scholar]
  16. Metuzals J. Helical arrangement of the subunits of the neurofibrillar bundles isolated from leech nervous system. J Cell Biol. 1967 Aug;34(2):690–696. doi: 10.1083/jcb.34.2.690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Metuzals J., Izzard C. S. Spatial patterns of threadlike elements in the axoplasm of the giant nerve fiber of the squid (Loligo pealii L.) as disclosed by differential interference microscopy and by electron microscopy. J Cell Biol. 1969 Dec;43(3):456–479. doi: 10.1083/jcb.43.3.456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Palay S. L., Sotelo C., Peters A., Orkand P. M. The axon hillock and the initial segment. J Cell Biol. 1968 Jul;38(1):193–201. doi: 10.1083/jcb.38.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. SCHMITT F. O., GEREN B. B. The fibrous structure of the nerve axon in relation to the localization of "neurotubules". J Exp Med. 1950 May 1;91(5):499–504. doi: 10.1084/jem.91.5.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SOLOMON S., TOBIAS J. M. Preliminary observations on squid axon structure. Light scattering properties using an intracellular light source and mechanical prod. Biol Bull. 1950 Oct;99(2):345–346. doi: 10.1086/BBLv99n2p321. [DOI] [PubMed] [Google Scholar]
  22. SPYROPOULOS C. S. Cytoplasmic pH of nerve fibres. J Neurochem. 1960 Feb;5:185–194. doi: 10.1111/j.1471-4159.1960.tb13352.x. [DOI] [PubMed] [Google Scholar]
  23. Scott D. A. Crystalline insulin. Biochem J. 1934;28(4):1592–1602.1. doi: 10.1042/bj0281592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. UNGAR G., ASCHHEIM I., PSYCHOYOS S., ROMANO D. V. Reversible changes of protein configuration in stimulated nerve structures. J Gen Physiol. 1957 Mar 20;40(4):635–652. doi: 10.1085/jgp.40.4.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. VILLEGAS G. M., VILLEGAS R. The ultrastructure of the giant nerve fibre of the squid: axon-Schwann cell relationship. J Ultrastruct Res. 1960 Jun;3:362–373. doi: 10.1016/s0022-5320(60)90015-0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES