Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1969 Dec 1;43(3):575–603. doi: 10.1083/jcb.43.3.575

SPERMIOGENESIS IN CANCER CRABS

Susan G Langreth 1
PMCID: PMC2107797  PMID: 4187136

Abstract

Spermiogenesis in Cancer crabs was studied by light and electron microscopy. The sperm are aflagellate, and when mature consist primarily of a spherical acrosome surrounded by the nucleus with its short radiating arms. The acrosome forms by a coalescence of periodic acid-Schiff-positive (PAS-positive) vesicles. During spermiogenesis one edge of the acrosomal vesicle invaginates to form a PAS-negative central core. The inner region of the acrosome bounding the core contains basic proteins which are not complexed to nucleic acid. The formation of an elaborate lattice-like complex of fused membranes, principally from membranes of the endoplasmic reticulum, is described. These membranes are later taken into the nucleus and subsequently degenerate. In late spermatids, when most of the cytoplasm is sloughed, the nuclear envelope and the cell membrane apparently fuse to become the limiting boundary over most of the sperm cell. In the mature sperm the chromatin of the nucleus and arms, which is Feulgen-positive, contains no detectable protein. The chromatin filaments appear clumped, branched, and anastomosed; morphologically, they resemble the DNA of bacterial nuclei. Mitochondria are absent or degenerate in mature sperm of Cancer crabs, but the centrioles persist in the nucleoplasm at the base of the acrosome.

Full Text

The Full Text of this article is available as a PDF (3.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alfert M., Geschwind I. I. A Selective Staining Method for the Basic Proteins of Cell Nuclei. Proc Natl Acad Sci U S A. 1953 Oct;39(10):991–999. doi: 10.1073/pnas.39.10.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BLOCH D. P., HEW H. Y. Schedule of spermatogenesis in the pulmonate snail Helix aspersa, with special reference to histone transition. J Biophys Biochem Cytol. 1960 Jun;7:515–532. doi: 10.1083/jcb.7.3.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BURGOS M. H., FAWCETT D. W. An electron microscope study of spermatid differentiation in the toad, Bufo arenarum Hensel. J Biophys Biochem Cytol. 1956 May 25;2(3):223–240. doi: 10.1083/jcb.2.3.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BURGOS M. H., FAWCETT D. W. Studies on the fine structure of the mammalian testis. I. Differentiation of the spermatids in the cat (Felis domestica). J Biophys Biochem Cytol. 1955 Jul 25;1(4):287–300. doi: 10.1083/jcb.1.4.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown G. G. Ultrastructural studies of sperm morphology and sperm-egg interaction in the decapod Callinectes sapidus. J Ultrastruct Res. 1966 Mar;14(5):425–440. doi: 10.1016/s0022-5320(66)80073-4. [DOI] [PubMed] [Google Scholar]
  6. Chevaillier P. Mise en evidence et etude cytochimique d'une proteine basique extranucleaire dans les spermatozoides des crustaces decapodes. J Cell Biol. 1967 Mar;32(3):547–556. doi: 10.1083/jcb.32.3.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. KAYE G. I., PAPPAS G. D., YASUZUMI G., YAMAMOTO H. The distribution and for of the endoplasmic reticulum during spermatogenesis in the crayfish. Cambaroides japonicus. Z Zellforsch Mikrosk Anat. 1961;53:159–171. doi: 10.1007/BF00339439. [DOI] [PubMed] [Google Scholar]
  8. KAYE J. S. Acrosome formation in the house cricket. J Cell Biol. 1962 Feb;12:411–431. doi: 10.1083/jcb.12.2.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KELLENBERGER E., RYTER A., SECHAUD J. Electron microscope study of DNA-containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. J Biophys Biochem Cytol. 1958 Nov 25;4(6):671–678. doi: 10.1083/jcb.4.6.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LACY D. Certain aspects of testis structure and function. Br Med Bull. 1962 Sep;18:205–208. doi: 10.1093/oxfordjournals.bmb.a069979. [DOI] [PubMed] [Google Scholar]
  11. LACY D. Light and electron microscopy and its use in the study of factors influencing spermatogenesis in the rat. J R Microsc Soc. 1960 Oct;79:209–225. doi: 10.1111/j.1365-2818.1959.tb04469.x. [DOI] [PubMed] [Google Scholar]
  12. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MEEK G. A., MOSES M. J. Microtubulation of the inner membrane of the nuclear envelope. J Biophys Biochem Cytol. 1961 May;10:121–131. doi: 10.1083/jcb.10.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MOSES M. J. Spermiogenesis in the crayfish (Procambarus clarkii) II. Description of stages. J Biophys Biochem Cytol. 1961 Jul;10:301–333. doi: 10.1083/jcb.10.3.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MOSES M. J. Spermiogenesis in the crayfish (Procambarus clarkii). I. Structural characterization of the mature sperm. J Biophys Biochem Cytol. 1961 Jan;9:222–228. doi: 10.1083/jcb.9.1.222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. MOSES M. J. Studies on nuclei using correlated cytochemical, light, and electron microscope techniques. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):397–406. doi: 10.1083/jcb.2.4.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. NASS M. M., NASS S., AFZELIUS B. A. THE GENERAL OCCURENCE OF MITOCHONDRIAL DNA. Exp Cell Res. 1965 Mar;37:516–539. doi: 10.1016/0014-4827(65)90204-1. [DOI] [PubMed] [Google Scholar]
  18. POCHON-MASSON J. [Chondriofusomes of the male gametes of the decapod crustacean, Carcinus moenas]. C R Hebd Seances Acad Sci. 1962 Jun 4;254:4076–4078. [PubMed] [Google Scholar]
  19. POCHON-MASSON J. [Origin and formation of the spermatozoid vesicle of Eupagurus bernhardus (anomuran decapod)]. C R Hebd Seances Acad Sci. 1963 Mar 4;256:2226–2228. [PubMed] [Google Scholar]
  20. RIS H., PLAUT W. Ultrastructure of DNA-containing areas in the chloroplast of Chlamydomonas. J Cell Biol. 1962 Jun;13:383–391. doi: 10.1083/jcb.13.3.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. RYTER A., KELLENBERGER E., BIRCHANDERSEN A., MAALOE O. Etude au microscope électronique de plasmas contenant de l'acide désoxyribonucliéique. I. Les nucléoides des bactéries en croissance active. Z Naturforsch B. 1958 Sep;13B(9):597–605. [PubMed] [Google Scholar]
  22. SMITH B. V., LACY D. Residual bodies of seminiferous tubules of the rat. Nature. 1959 Jul 25;184:249–251. doi: 10.1038/184249a0. [DOI] [PubMed] [Google Scholar]
  23. SMITH M. DEOXYRIBONUCLEIC ACIDS OF CRUSTACEA. J Mol Biol. 1964 Jul;9:17–23. doi: 10.1016/s0022-2836(64)80088-7. [DOI] [PubMed] [Google Scholar]
  24. SUEOKA N., CHENG T. Y. Natural occurrence of a deoxyribonucleic acid resembling the deoxyadenylate-deoxythymidylate polymer. Proc Natl Acad Sci U S A. 1962 Oct 15;48:1851–1856. doi: 10.1073/pnas.48.10.1851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. SWIFT H., ADAMS B. J., LARSEN K. ELECTRON MICROSCOPE CYTOCHEMISTRY OF NUCLEIC ACIDS IN DROSOPHILA SALIVARY GLANDS AND TETRAHYMENA. J R Microsc Soc. 1964 Jun;83:161–167. doi: 10.1111/j.1365-2818.1964.tb00525.x. [DOI] [PubMed] [Google Scholar]
  26. Skinner D. M. SATELLITE DNA'S IN THE CRABS Gecarcinus lateralis AND Cancer pagurus. Proc Natl Acad Sci U S A. 1967 Jul;58(1):103–110. doi: 10.1073/pnas.58.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. TORMEY J. M. DIFFERENCES IN MEMBRANE CONFIGURATION BETWEEN OSMIUM TETROXIDE-FIXED AND GLUTARALDEHYDE-FIXED CILIARY EPITHELIUM. J Cell Biol. 1964 Dec;23:658–664. doi: 10.1083/jcb.23.3.658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. YASUZUMI G., KAYE G. I., PAPPAS G. D., YAMAMOTO H., TSUBO I. Nuclear and cytoplasmic differentiation in developing sperm of the crayfish, Cambaroides japonicus. Z Zellforsch Mikrosk Anat. 1961;53:141–158. doi: 10.1007/BF00339438. [DOI] [PubMed] [Google Scholar]
  30. YASUZUMI G. Spermatogenesis in animals as revealed by electron microscopy. VII. Spermatid differentiation in the crab, Eriocheir japonicus. J Biophys Biochem Cytol. 1960 Feb;7:73–77. doi: 10.1083/jcb.7.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yasuzumi G., Lee K. J. Spermatogenesis in animals as revealed by electron microscopy. XVI. The microtubular structure and sites of thiamine pyrophosphatase activity in premature sperm of the Japanese crayfish. Z Zellforsch Mikrosk Anat. 1966;73(3):384–404. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES