Abstract
Earle's L-929 fibroblasts from cultures treated with 5–10 µg/ml of vincristine sulfate have a large number of eosinophilic, proteinaceous crystals in their cytoplasm. In electron micrographs, large arrays of helical polyribosomes, stacks of Golgi lamellae, and membranes of granular endoplasmic reticulum are seen in the cytoplasm of these cells. "Stalks" of fine granular material, approximately 300 A wide, are often seen in association with the arrays of the helical polyribosomes. In many sections rows of helical polyribosomes and filaments emerging from individual polyribosomes are seen in intimate contact with the crystals. A gradual reduction in the number of crystals and crystal-bearing cells is seen in cultures removed from the drug-containing medium and reincubated in fresh medium. In electron micrographs, these reincubated cells show large aggregates of filamentous material in the cytoplasm, and in many sections filaments are seen in continuity with the crystals.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Behnke O., Zelander T. Filamentous substructure of microtubules of the marginal bundle of mammalian blood platelets. J Ultrastruct Res. 1967 Jul;19(1):147–165. doi: 10.1016/s0022-5320(67)80065-0. [DOI] [PubMed] [Google Scholar]
- Bensch K. G., Malawista S. E. Microtubular crystals in mammalian cells. J Cell Biol. 1969 Jan;40(1):95–107. doi: 10.1083/jcb.40.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brinkley B. R., Stubblefield E., Hsu T. C. The effects of colcemid inhibition and reversal on the fine structure of the mitotic apparatus of Chinese hamster cells in vitro. J Ultrastruct Res. 1967 Jul;19(1):1–18. doi: 10.1016/s0022-5320(67)80057-1. [DOI] [PubMed] [Google Scholar]
- Brinkley B. R., Stubblefield E. The fine structure of the kinetochore of a mammalian cell in vitro. Chromosoma. 1966;19(1):28–43. doi: 10.1007/BF00332792. [DOI] [PubMed] [Google Scholar]
- CUTTS J. H. The effect of vincaleukoblastine on dividing cells in vivo. Cancer Res. 1961 Feb;21:168–172. [PubMed] [Google Scholar]
- George P., Journey L. J., Goldstein M. N. Effect of vincristine on the fine structure of HeLa cells during mitosis. J Natl Cancer Inst. 1965 Aug;35(2):355–375. [PubMed] [Google Scholar]
- JOHNSON I. S., WRIGHT H. F., SVOBODA G. H., VLANTIS J. Antitumor principles derived from Vinca rosea Linn. I. Vincaleukoblastine and leurosine. Cancer Res. 1960 Aug;20:1016–1022. [PubMed] [Google Scholar]
- Jones K. W. The induction of paracrystalline thread-complexes in the nuclei of amphibian cells by actinomycin D and other DNA-binding antibiotics. J Ultrastruct Res. 1967 Apr;18(1):71–84. doi: 10.1016/s0022-5320(67)80232-6. [DOI] [PubMed] [Google Scholar]
- Karasaki S. Intranuclear crystal within the phagocytes of the ovary of Arbacia punctulata. J Cell Biol. 1965 Jun;25(3):654–660. doi: 10.1083/jcb.25.3.654. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krishan A. Fine structure of the kinetochores in vinblastine sulfate-treated cells. J Ultrastruct Res. 1968 Apr;23(1):134–143. doi: 10.1016/s0022-5320(68)80037-1. [DOI] [PubMed] [Google Scholar]
- Krishan A., Hsu D., Hutchins P. Hypertrophy of granular endoplasmic reticulum and annulate lamellae in Earle's L cells exposed to vinblastine sulfate. J Cell Biol. 1968 Oct;39(1):211–216. doi: 10.1083/jcb.39.1.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lane N. J. Intranuclear fibrillar bodies in actinomycin D-treated oocytes. J Cell Biol. 1969 Jan;40(1):286–291. doi: 10.1083/jcb.40.1.286. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malawista S. E., Sato H., Bensch K. G. Vinblastine and griseofulvin reversibly disrupt the living mitotic spindle. Science. 1968 May 17;160(3829):770–772. doi: 10.1126/science.160.3829.770. [DOI] [PubMed] [Google Scholar]
- PALMER C. G., LIVENGOOD D., WARREN A. K., SIMPSON P. J., JOHNSON I. S. The action of the vincaleukolastine on mitosis in vitro. Exp Cell Res. 1960 Jun;20:198–201. doi: 10.1016/0014-4827(60)90234-2. [DOI] [PubMed] [Google Scholar]
- Phillips D. M. Substructure of flagellar tubules. J Cell Biol. 1966 Dec;31(3):635–638. doi: 10.1083/jcb.31.3.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROBBINS E., GONATAS N. K. HISTOCHEMICAL AND ULTRASTRUCTURAL STUDIES ON HELA CELL CULTURES EXPOSED TO SPINDLE INHIBITORS WITH SPECIAL REFERENCE TO THE INTERPHASE CELL. J Histochem Cytochem. 1964 Sep;12:704–711. doi: 10.1177/12.9.704. [DOI] [PubMed] [Google Scholar]
- Reger J. F., Schultz P. W., Rouiller G. C. Observations on intranuclear and cytoplasmic paracrystalline structures in differentiating oocytes of the ostracod, Cypridopsis vidua. Exp Cell Res. 1965 Sep;39(2):607–612. doi: 10.1016/0014-4827(65)90063-7. [DOI] [PubMed] [Google Scholar]
- Schochet S. S., Jr, Lampert P. W., Earle K. M. Neuronal changes induced by intrathecal vincristine sulfate. J Neuropathol Exp Neurol. 1968 Oct;27(4):645–658. [PubMed] [Google Scholar]
- Tilney L. G., Hiramoto Y., Marsland D. Studies on the microtubules in heliozoa. 3. A pressure analysis of the role of these structures in the formation and maintenance of the axopodia of Actinosphaerium nucleofilum (Barrett). J Cell Biol. 1966 Apr;29(1):77–95. doi: 10.1083/jcb.29.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tilney L. G., Porter K. R. Studies on the microtubules in heliozoa. II. The effect of low temperature on these structures in the formation and maintenance of the axopodia. J Cell Biol. 1967 Jul;34(1):327–343. doi: 10.1083/jcb.34.1.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
