Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1969 Jun 1;41(3):855–875. doi: 10.1083/jcb.41.3.855

COORDINATED DEVELOPMENT OF THE SARCOPLASMIC RETICULUM AND T SYSTEM DURING POSTNATAL DIFFERENTIATION OF RAT SKELETAL MUSCLE

S Schiaffino 1, A Margreth 1
PMCID: PMC2107825  PMID: 5814005

Abstract

An electron microscope study has been carried out on rat psoas muscle, during the early postnatal stages of development. Among the several subcellular components, the sarcotubular system undergoes the most striking modifications during this period. In muscle fibers of the newborn rat, junctional contacts between the T system and the SR are sparse and are, mostly, longitudinally or obliquely oriented. The T tubules do not penetrate deeply into the muscle cell, as indicated by the predominantly peripheral location of the triads and the persistence, at these stages of development, of a highly branched subsarcolemmal system of tubules. Diadic associations of junctional SR elements with the plasma membrane are also occasionally observed. The early SR elaborations incompletely delineate the myofibrils, at both the A- and I-band level. Longitudinal sections show irregularly oriented SR tubules, running continuously over successive sarcomeres. Flattened junctional cisterns filled with granular material are sparse and laterally interconnected, at circumscribed sites, with the SR tubules. Between 1 and 2 wk postpartum, transversal triadic contacts are extensively established, at the A-I band level, and the SR network differentiates into two portions in register with the A and I band, respectively. At 10–15 days after birth, the SR provides a transversely continuous double sheet around the myofibrils at the I-band level, whereas it forms a single discontinuous layer at the A-band level. The relationship that these morphological modifications of the sarcotubular system may bear to previously described biochemical and physiological changes of rat muscle fibers after birth is discussed.

Full Text

The Full Text of this article is available as a PDF (3.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARANY M., BARANY K., RECKARD T., VOLPE A. MYOSIN OF FAST AND SLOW MUSCLES OF THE RABBIT. Arch Biochem Biophys. 1965 Jan;109:185–191. doi: 10.1016/0003-9861(65)90304-8. [DOI] [PubMed] [Google Scholar]
  2. Brandt P. W., Reuben J. P., Girardier L., Grundfest H. Correlated morphological and physiological studies on isolated single muscle fibers. I. Fine structure of the crayfish muscle fiber. J Cell Biol. 1965 Jun;25(3 Suppl):233–260. doi: 10.1083/jcb.25.3.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cornog J. L., Jr, Gonatas N. K. Ultrastructure of rhabdomyoma. J Ultrastruct Res. 1967 Oct 31;20(5):433–450. doi: 10.1016/s0022-5320(67)80111-4. [DOI] [PubMed] [Google Scholar]
  4. DAWSON D. M., GOODFRIEND T. L., KAPLAN N. O. LACTIC DEHYDROGENASES: FUNCTIONS OF THE TWO TYPES RATES OF SYNTHESIS OF THE TWO MAJOR FORMS CAN BE CORRELATED WITH METABOLIC DIFFERENTIATION. Science. 1964 Feb 28;143(3609):929–933. doi: 10.1126/science.143.3609.929. [DOI] [PubMed] [Google Scholar]
  5. Engel A. G., Dale A. J. Autophagic glycogenosis of late onset with mitochondrial abnormalities: light and electron microscopic observations. Mayo Clin Proc. 1968 Apr;43(4):233–279. [PubMed] [Google Scholar]
  6. FRANZINI-ARMSTRONG C., PORTER K. R. SARCOLEMMAL INVAGINATIONS CONSTITUTING THE T SYSTEM IN FISH MUSCLE FIBERS. J Cell Biol. 1964 Sep;22:675–696. doi: 10.1083/jcb.22.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fahimi H. D., Karnovsky M. J. Cytochemical localization of two glycolytic dehydrogenases in white skeletal muscle. J Cell Biol. 1966 Apr;29(1):113–128. doi: 10.1083/jcb.29.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gori Z., Pellegrino C., Pollera M. The castration atrophy of the dorsal bulbocavernosus muscle of rat: an electron microscopic study. Exp Mol Pathol. 1967 Apr;6(2):172–198. doi: 10.1016/0014-4800(67)90054-8. [DOI] [PubMed] [Google Scholar]
  9. Gutmann E., Hanzlíková V. Contracture responses of fast and slow mammalian muscles. Physiol Bohemoslov. 1966;15(5):404–414. [PubMed] [Google Scholar]
  10. HARTSHORNE D. J., PERRY S. V. A chromatographic and electrophoretic study of sarcoplasm from adult--and foetal-rabbit muscles. Biochem J. 1962 Oct;85:171–177. doi: 10.1042/bj0850171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HUXLEY A. F. MUSCLE. Annu Rev Physiol. 1964;26:131–152. doi: 10.1146/annurev.ph.26.030164.001023. [DOI] [PubMed] [Google Scholar]
  12. HUXLEY H. E. EVIDENCE FOR CONTINUITY BETWEEN THE CENTRAL ELEMENTS OF THE TRIADS AND EXTRACELLULAR SPACE IN FROG SARTORIUS MUSCLE. Nature. 1964 Jun 13;202:1067–1071. doi: 10.1038/2021067b0. [DOI] [PubMed] [Google Scholar]
  13. Hazlewood C. F., Nichols B. L., Jr In vitro investigation of resting muscle membrane potential in preweanling and weanling rat. Nature. 1967 Mar 4;213(5079):935–936. doi: 10.1038/213935b0. [DOI] [PubMed] [Google Scholar]
  14. Ishikawa H. Formation of elaborate networks of T-system tubules in cultured skeletal muscle with special reference to the T-system formation. J Cell Biol. 1968 Jul;38(1):51–66. doi: 10.1083/jcb.38.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Karpati G., Engel W. K. Neuronal trophic function. A new aspect demonstrated histochemically in developing soleus muscle. Arch Neurol. 1967 Nov;17(5):542–545. doi: 10.1001/archneur.1967.00470290096012. [DOI] [PubMed] [Google Scholar]
  16. Kendrick-Jones J., Perry S. V. The enzymes of adenine nucleotide metabolism in developing skeletal muscle. Biochem J. 1967 Apr;103(1):207–214. doi: 10.1042/bj1030207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. MARGRETH A., MUSCATELLO U., ANDERSSON-CEDERGREN E. A MORPHOLOGI- CAL AND BIOCHEMICAL STUDY ON THE REGULATION OF CARBOHYDRATE METABOLISM IN THE MUSCLE CELL. Exp Cell Res. 1963 Dec;32:484–509. doi: 10.1016/0014-4827(63)90189-7. [DOI] [PubMed] [Google Scholar]
  18. MARGRETH A. THE SARCOTUBULAR SYSTEM AND ITS RELATION TO THE CONTROL OF GLYCOLYSIS. Biochim Biophys Acta. 1963 Oct 1;77:337–339. doi: 10.1016/0006-3002(63)90506-7. [DOI] [PubMed] [Google Scholar]
  19. PADYKULA H. A., HERMAN E. The specificity of the histochemical method for adenosine triphosphatase. J Histochem Cytochem. 1955 May;3(3):170–195. doi: 10.1177/3.3.170. [DOI] [PubMed] [Google Scholar]
  20. PEACHEY L. D., HUXLEY A. F. Structural identification of twitch and slow striated muscle fibers of the frog. J Cell Biol. 1962 Apr;13:177–180. doi: 10.1083/jcb.13.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. PORTER K. R., PALADE G. E. Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells. J Biophys Biochem Cytol. 1957 Mar 25;3(2):269–300. doi: 10.1083/jcb.3.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Peachey L. D. Muscle. Annu Rev Physiol. 1968;30:401–440. doi: 10.1146/annurev.ph.30.030168.002153. [DOI] [PubMed] [Google Scholar]
  23. Peachey L. D. The role of transverse tubules in excitation contraction coupling in striated muscles. Ann N Y Acad Sci. 1966 Jul 14;137(2):1025–1037. doi: 10.1111/j.1749-6632.1966.tb50214.x. [DOI] [PubMed] [Google Scholar]
  24. Peachey L. D. The sarcoplasmic reticulum and transverse tubules of the frog's sartorius. J Cell Biol. 1965 Jun;25(3 Suppl):209–231. doi: 10.1083/jcb.25.3.209. [DOI] [PubMed] [Google Scholar]
  25. Philpott C. W., Goldstein M. A. Sarcoplasmic reticulum of striated muscle: localization of potential calcium binding sites. Science. 1967 Feb 24;155(3765):1019–1021. doi: 10.1126/science.155.3765.1019. [DOI] [PubMed] [Google Scholar]
  26. Rostgaard J., Behnke O. Fine structural localization of adenine nucleoside phosphatase activity in the sarcoplasmic reticulum and the T system of rat myocardium. J Ultrastruct Res. 1965 Jun;12(5):579–591. doi: 10.1016/s0022-5320(65)80049-1. [DOI] [PubMed] [Google Scholar]
  27. Schotland D. L., Spiro D., Carmel P. Ultrastructural studies of ring fibers in human muscle disease. J Neuropathol Exp Neurol. 1966 Jul;25(3):431–442. doi: 10.1097/00005072-196607000-00007. [DOI] [PubMed] [Google Scholar]
  28. Tice L. W., Engel A. G. The effects of glucocorticoids on red and white muscles in the rat. Am J Pathol. 1967 Feb;50(2):311–333. [PMC free article] [PubMed] [Google Scholar]
  29. Walker S. M., Schrodt G. R. Triads in skeletal muscle fibers of 19-day fetal rats. J Cell Biol. 1968 May;37(2):564–569. doi: 10.1083/jcb.37.2.564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Weibel E. R., Kistler G. S., Scherle W. F. Practical stereological methods for morphometric cytology. J Cell Biol. 1966 Jul;30(1):23–38. doi: 10.1083/jcb.30.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES