Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1969 Jun 1;41(3):816–831. doi: 10.1083/jcb.41.3.816

INTERACTION OF ESTROGEN AND PROGESTERONE IN CHICK OVIDUCT DEVELOPMENT

I. Antagonistic Effect of Progesterone on Estrogen-Induced Proliferation and Differentiation of Tubular Gland Cells

Takami Oka 1, Robert T Schimke 1
PMCID: PMC2107830  PMID: 5814004

Abstract

Daily administration of estrogen to immature female chicks results in marked oviduct growth and appearance of characteristic tubular gland cells which contain lysozyme. Although a rapid increase in total DNA and RNA content begins within 24 hr, cell specific protein, lysozyme, is first detectable after 3 days of estrogen. Progesterone administered concomitantly with estrogen antagonizes the estrogen-induced tissue growth as well as appearance of tubular gland cells and their specific products, lysozyme and ovalbumin. When the initiation of progesterone administration is delayed for progressively longer periods (days) during estrogen treatment, proportionally greater growth occurs with more lysozyme and tubular gland cells after 5 days of total treatment. Progesterone does not inhibit the estrogen-stimulated increase in uptake of α-aminoisobutyric acid and water by oviduct occurring within 24 hr or the estrogen-induced increase in total lipid, phospholipid, and phosphoprotein content of serum. The above results of progesterone antagonism can best be explained by the hypothesis that progesterone inhibits the initial proliferation of cells which become tubular gland cells but does not antagonize the subsequent cytodifferentiation leading to the synthesis of lysozyme and ovalbumin once such cell proliferation has occurred.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRAGDON J. H. Colorimetric determination of blood lipides. J Biol Chem. 1951 Jun;190(2):513–517. [PubMed] [Google Scholar]
  2. BRENEMAN W. R. Steroid hormones and the development of the reproductive system in the pullet. Endocrinology. 1956 Feb;58(2):262–271. doi: 10.1210/endo-58-2-262. [DOI] [PubMed] [Google Scholar]
  3. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  4. GREENGARD O., GORDON M., SMITH M. A., ACS G. STUDIES ON THE MECHANISM OF DIETHYLSTILBESTROL-INDUCED FORMATION OF PHOSPHOPROTEIN IN MALE CHICKENS. J Biol Chem. 1964 Jun;239:2079–2082. [PubMed] [Google Scholar]
  5. Jensen E. V., Suzuki T., Kawashima T., Stumpf W. E., Jungblut P. W., DeSombre E. R. A two-step mechanism for the interaction of estradiol with rat uterus. Proc Natl Acad Sci U S A. 1968 Feb;59(2):632–638. doi: 10.1073/pnas.59.2.632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jonsson C. E., Terenius L. Uptake of radioactive oestrogens in the chicken oviduct and some other organs. Acta Endocrinol (Copenh) 1965 Oct;50(2):289–300. doi: 10.1530/acta.0.0500289. [DOI] [PubMed] [Google Scholar]
  7. KALMAN S. M., DANIELS J. R. Effect of injected estradiol on the uptake of alpha-aminoisobutyric acid by tissues of the ovariectomized rat. Biochem Pharmacol. 1961 Sep;8:250–252. doi: 10.1016/0006-2952(61)90011-9. [DOI] [PubMed] [Google Scholar]
  8. Kekwick R. A. The serum proteins in multiple myelomatosis. Biochem J. 1940 Sep;34(8-9):1248–1257. doi: 10.1042/bj0341248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kohler P. O., Grimley P. M., O'Malley B. W. Protein synthesis: differential stimulation of cell-specific proteins in epithelial cells of chick oviduct. Science. 1968 Apr 5;160(3823):86–87. doi: 10.1126/science.160.3823.86. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. MASON R. C. Synergistic and antagonistic effects of progesterone in combination with estrogens on oviduct weight. Endocrinology. 1952 Dec;51(6):570–572. doi: 10.1210/endo-51-6-570. [DOI] [PubMed] [Google Scholar]
  12. Meyer S. L., Saunders A. M. Cytofluorometric study of mast cell polyanions. I. Instrumentation and ion-exchange bead standards. Anal Biochem. 1968 Mar;22(3):493–497. doi: 10.1016/0003-2697(68)90290-x. [DOI] [PubMed] [Google Scholar]
  13. NOALL M. W., ALLEN W. M. Early stimulation by estradiol of amino acid penetration in rabbit uterus. J Biol Chem. 1961 Nov;236:2987–2990. [PubMed] [Google Scholar]
  14. Noteboom W. D., Gorski J. Stereospecific binding of estrogens in the rat uterus. Arch Biochem Biophys. 1965 Sep;111(3):559–568. doi: 10.1016/0003-9861(65)90235-3. [DOI] [PubMed] [Google Scholar]
  15. O'Malley B. W. In vitro hormonal induction of a specific protein (avidin) in chick oviduct. Biochemistry. 1967 Aug;6(8):2546–2551. doi: 10.1021/bi00860a036. [DOI] [PubMed] [Google Scholar]
  16. O'Malley B. W., Kohler P. O. Hormonal induction of specific proteins in chick oviduct cell cultures. Biochem Biophys Res Commun. 1967 Jul 10;28(1):1–7. doi: 10.1016/0006-291x(67)90396-8. [DOI] [PubMed] [Google Scholar]
  17. O'Malley B. W., Kohler P. O. Studies on steroid regulation of synthesis of a specific oviduct protein in a new monolayer culture system. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2359–2366. doi: 10.1073/pnas.58.6.2359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. O'Malley B. W., McGuire W. L., Middleton P. A. Structure-function relationships of various steroids relative to induction of a specific oviduct protein (Avidin). Endocrinology. 1967 Sep;81(3):677–678. doi: 10.1210/endo-81-3-677. [DOI] [PubMed] [Google Scholar]
  19. O'Malley B. W., McGuire W. L. Studies on the mechanism of estrogen-mediated tissue differentiation: regulation of nuclear transcription and induction of new RNA species. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1527–1534. doi: 10.1073/pnas.60.4.1527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. PERLMANN G. E. Enzymatic dephosphorylation of ovalbumin and plakalbumin. J Gen Physiol. 1952 May;35(5):711–726. doi: 10.1085/jgp.35.5.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SANGER F., HOCQUARD E. Formation of dephospho-ovalbumin as an intermediate in the biosynthesis of ovalbumin. Biochim Biophys Acta. 1962 Aug 27;62:606–607. doi: 10.1016/0006-3002(62)90253-6. [DOI] [PubMed] [Google Scholar]
  22. SPERRY W. M., BRAND F. C. The determination of total lipides in blood serum. J Biol Chem. 1955 Mar;213(1):69–76. [PubMed] [Google Scholar]
  23. STONE G. M. THE EFFECT OF OESTROGEN ANTAGONISTS ON THE UPTAKE OF TRITIATED OESTRADIOL BY THE UTERUS AND VAGINA OF THE OVARIECTOMIZED MOUSE. J Endocrinol. 1964 May;29:127–136. doi: 10.1677/joe.0.0290127. [DOI] [PubMed] [Google Scholar]
  24. Stockdale F. E., Topper Y. J. The role of DNA synthesis and mitosis in hormone-dependent differentiation. Proc Natl Acad Sci U S A. 1966 Oct;56(4):1283–1289. doi: 10.1073/pnas.56.4.1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Toft D., Shyamala G., Gorski J. A receptor molecule for estrogens: studies using a cell-free system. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1740–1743. doi: 10.1073/pnas.57.6.1740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Turkington R. W., Topper Y. J. Androgen inhibition of mammary gland differentiation in vitro. Endocrinology. 1967 Feb;80(2):329–336. doi: 10.1210/endo-80-2-329. [DOI] [PubMed] [Google Scholar]
  27. VANSTONE W. E., DALE D. G., OLIVER W. F., COMMON R. H. Sites of formation of plasma phosphoprotein and phospholipid in the estrogenized cockerel. Can J Biochem Physiol. 1957 Aug;35(8):659–665. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES