Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1969 Oct 1;43(1):105–114. doi: 10.1083/jcb.43.1.105

LIPIDS OF ACANTHAMOEBA CASTELLANII

Composition and Effects of Phagocytosis on Incorporation of Radioactive Precursors

Andrew G Ulsamer 1, Frank Rees Smith 1, Edward D Korn 1
PMCID: PMC2107846  PMID: 4309952

Abstract

The lipids of Acanthamoeba castellanii (Neff) consist of 52% neutral lipids and 48% polar lipids. Triglycerides account for 75% and free sterols for 17% of the neutral lipids. The major phospholipids are phosphatidylcholine (45%), phosphatidylethanolamine (33%), phosphatidylserine (10%), a phosphoinositide (6%), and diphosphatidylglycerol (4%). The phosphoinositide is unique in that it contains fatty acids, aldehyde, inositol, and phosphate in the ratio of 1.4:0.5:1.1, but it contains no glycerol. Sphingomyelin, cerebrosides, psychosine, and glycoglycerides were not detected, but small amounts of unidentified long chain bases and sugars are present. The rates of uptake of palmitate-1-14C and of its incorporation into glycerides and phospholipids were not affected by the phagocytosis of polystyrene latex beads. Although phagocytosis usually decreased the uptake by amebas of phosphate-32P, serine-U-14C, and inositol-2-3H, their subsequent incroporation into phospholipids was not demonstrably stimulated or inhibited by phagocytosis. Phagocytosis did seem to increase the incorporation into ameba phospholipids of phosphatidylcholine-1 ,2-14C but not that of phosphatidylethanolamine-1 ,2-14C. These experiments, in which the incorporation of radioactive precursors into total cell lipids was measured, do not, of course, eliminate the possibility that localized effects may occur.

Full Text

The Full Text of this article is available as a PDF (667.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AXELROD J., REICHENTHAL J., BRODIE B. B. The direct determination of phosphatidyl ethanolamine and phosphatidyl serine in plasma and red blood cells. J Biol Chem. 1953 Oct;204(2):903–911. [PubMed] [Google Scholar]
  2. Biezenski J. J. Efficient elution of rabbit liver and plasma phospholipids from thin-layer plates. J Lipid Res. 1967 Jul;8(4):409–410. [PubMed] [Google Scholar]
  3. CRANE R. K., LIPMANN F. The effect of arsenate on aerobic phosphorylation. J Biol Chem. 1953 Mar;201(1):235–243. [PubMed] [Google Scholar]
  4. Elsbach P., Levy S. Increased synthesis of phospholipid during phagocytosis. J Clin Invest. 1968 Oct;47(10):2217–2229. doi: 10.1172/JCI105907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  6. GOODMAN D. S. Preparation of human serum albumin free of long-chain fatty acids. Science. 1957 Jun 28;125(3261):1296–1297. doi: 10.1126/science.125.3261.1296. [DOI] [PubMed] [Google Scholar]
  7. GRANT D. R. Reagent stability in Rosen's ninhydrin method of analysis for amino acids. Anal Biochem. 1963 Jul;6:109–110. doi: 10.1016/0003-2697(63)90013-7. [DOI] [PubMed] [Google Scholar]
  8. Graham R. C., Jr, Karnovsky M. J., Shafer A. W., Glass E. A., Karnovsky M. L. Metabolic and morphological observations on the effect of surface-active agents of leukocytes. J Cell Biol. 1967 Mar;32(3):629–647. doi: 10.1083/jcb.32.3.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HANAHAN D. J., OLLEY J. N. Chemical nature of monophosphoinositides. J Biol Chem. 1958 Apr;231(2):813–828. [PubMed] [Google Scholar]
  10. KARNOVSKY M. L., WALLACH D. F. The metabolic basis of phagocytosis. III. Incorporation of inorganic phosphate into various classes of phosphatides during phagocytosis. J Biol Chem. 1961 Jul;236:1895–1901. [PubMed] [Google Scholar]
  11. KORN E. D. FATTY ACIDS OF ACANTHAMOEBA SP. J Biol Chem. 1963 Nov;238:3584–3587. [PubMed] [Google Scholar]
  12. Korn E. D., Weisman R. A. Phagocytosis of latex beads by Acanthamoeba. II. Electron microscopic study of the initial events. J Cell Biol. 1967 Jul;34(1):219–227. doi: 10.1083/jcb.34.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MINARI O., ZILVERSMIT D. B. USE OF KCN FOR STABILIZATION OF COLOR IN DIRECT NESSLERIZATION OF KJELDAHL DIGESTS. Anal Biochem. 1963 Oct;6:320–327. doi: 10.1016/0003-2697(63)90156-8. [DOI] [PubMed] [Google Scholar]
  14. MOORE P. R., BAUMANN C. A. Skin sterols. I. Colorimetric determination of cholesterol and other sterols in skin. J Biol Chem. 1952 Apr;195(2):615–621. [PubMed] [Google Scholar]
  15. OREN R., FARNHAM A. E., SAITO K., MILOFSKY E., KARNOVSKY M. L. Metabolic patterns in three types of phagocytizing cells. J Cell Biol. 1963 Jun;17:487–501. doi: 10.1083/jcb.17.3.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Prottey C., Ballou C. E. Diacyl myoinositol monomannoside from Propionibacterium shermanii. J Biol Chem. 1968 Dec 10;243(23):6196–6201. [PubMed] [Google Scholar]
  17. RAPPORT M. M., ALONZO N. Identification of phosphatidal choline as the major constituent of beef heart lecithin. J Biol Chem. 1955 Nov;217(1):199–204. [PubMed] [Google Scholar]
  18. RAPPORT M. M., ALONZO N. Photometric determination of fatty acid ester groups in phospholipides. J Biol Chem. 1955 Nov;217(1):193–198. [PubMed] [Google Scholar]
  19. ROSEN H. A modified ninhydrin colorimetric analysis for amino acids. Arch Biochem Biophys. 1957 Mar;67(1):10–15. doi: 10.1016/0003-9861(57)90241-2. [DOI] [PubMed] [Google Scholar]
  20. SBARRA A. J., KARNOVSKY M. L. The biochemical basis of phagocytosis. 2. Incorporation of C14-labeled building blocks into lipid, protein, and glycogen of leukocytes during phagocytosis. J Biol Chem. 1960 Aug;235:2224–2229. [PubMed] [Google Scholar]
  21. SPENCER B. The ultramicro determination of inorganic sulphte. Biochem J. 1960 Jun;75:435–440. doi: 10.1042/bj0750435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sastry P. S., Hokin L. E. Studies on the role of phospholipids in phagocytosis. J Biol Chem. 1966 Jul 25;241(14):3354–3361. [PubMed] [Google Scholar]
  23. Smith F. R., Korn E. D. 7-Dehydrostigmasterol and ergosterol: the major sterols of an amoeba. J Lipid Res. 1968 Jul;9(4):405–408. [PubMed] [Google Scholar]
  24. WHEELDON L. W., COLLINS F. D. Studies on phospholipids. 3. Determination of choline. Biochem J. 1958 Sep;70(1):43–45. doi: 10.1042/bj0700043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Walborg E. F., Jr, Christensson L. A colorimetric method for the quantitative determination of monosaccharides. Anal Biochem. 1965 Nov;13(2):186–193. doi: 10.1016/0003-2697(65)90188-0. [DOI] [PubMed] [Google Scholar]
  26. Weisman R. A., Korn E. D. Phagocytosis of latex beads by Acanthamoeba. I. Biochemical properties. Biochemistry. 1967 Feb;6(2):485–497. doi: 10.1021/bi00854a017. [DOI] [PubMed] [Google Scholar]
  27. Weisman R. A., Korn E. D. Uptake of fatty acids by Acanthamoeba. Biochim Biophys Acta. 1966 Apr 4;116(2):229–242. doi: 10.1016/0005-2760(66)90006-3. [DOI] [PubMed] [Google Scholar]
  28. Wetzel M. G., Korn E. D. Phagocytosis of latex beads by Acahamoeba castellanii (Neff). 3. Isolation of the phagocytic vesicles and their membranes. J Cell Biol. 1969 Oct;43(1):90–104. doi: 10.1083/jcb.43.1.90. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES