Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1969 Nov 1;43(2):289–311. doi: 10.1083/jcb.43.2.289

RADIOAUTOGRAPHIC VISUALIZATION OF THE INCORPORATION OF GALACTOSE-3H AND MANNOSE-3H BY RAT THYROIDS IN VITRO IN RELATION TO THE STAGES OF THYROGLOBULIN SYNTHESIS

P Whur 1, Annette Herscovics 1, C P Leblond 1
PMCID: PMC2107858  PMID: 5344149

Abstract

Rat thyroid lobes incubated with mannose-3H, galactose-3H, or leucine-3H, were studied by radioautography. With leucine-3H and mannose-3H, the grain reaction observed in the light microscope is distributed diffusely over the cells at 5 min, with no reaction over the colloid. Later, the grains are concentrated towards the apex, and colloid reactions begin to appear by 2 hr. With galactose-3H, the reaction at 5 min is again restricted to the cells but it consists of clumped grains next to the nucleus. Soon after, grains are concentrated at the cell apex and colloid reactions appear in some follicles as early as 30 min. Puromycin almost totally inhibits incorporation of leucine-3H and mannose-3H, but has no detectable effect on galactose-3H incorporation during the 1st hr. Quantitation of electron microscope radioautographs shows that mannose-3H label localizes initially in the rough endoplasmic reticulum, and by 1–2 hr much of this reaction is transferred to the Golgi apparatus. At 3 hr and subsequently, significant reactions are present over apical vesicles and colloid, while the Golgi reaction declines. Label associated with galactose-3H localizes initially in the Golgi apparatus and rapidly transfers to the apical vesicles, and then to the colloid. These findings indicate that mannose incorporation into thyroglobulin precursors occurs within the rough endoplasmic reticulum; these precursors then migrate to the Golgi apparatus, where galactose incorporation takes place. The glycoprotein thus formed migrates via the apical vesicles to the colloid.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachmann L., Salpeter M. M., Salpeter E. E. Das Auflösungsvermögen elektronenmikroskopischer Autoradiographien. Histochemie. 1968;15(3):234–250. doi: 10.1007/BF00305888. [DOI] [PubMed] [Google Scholar]
  2. Barland P., Smith C., Hamerman D. Localization of hyaluronic acid in synovial cells by radioautography. J Cell Biol. 1968 Apr;37(1):13–26. doi: 10.1083/jcb.37.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bouchilloux S., Cheftel C. Biosynthesis of thyroglobulin: absence of 14-C-glucosamine incorporation on thyroid polysomes. Biochem Biophys Res Commun. 1966 May 3;23(3):305–310. doi: 10.1016/0006-291x(66)90546-8. [DOI] [PubMed] [Google Scholar]
  4. CARO L. G. High-resolution autoradiogaphy. II. The problem of resolution. J Cell Biol. 1962 Nov;15:189–199. doi: 10.1083/jcb.15.2.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Droz B. Elaboration de glycoproteines dans l'appareil de Golgi des cellules hépatiques chez le rat; étude radioautographique en microscopie électronique après injection de glactose-3H. C R Acad Sci Hebd Seances Acad Sci D. 1966 Apr 18;262(16):1766–1768. [PubMed] [Google Scholar]
  6. Ekholm R., Strandberg U. Studies on the protein synthesis in the guinea pig thyroid. II. In vivo labeling of thyroglobulin with 3H-leucine. J Ultrastruct Res. 1967 Jan;17(1):184–194. doi: 10.1016/s0022-5320(67)80029-7. [DOI] [PubMed] [Google Scholar]
  7. Ekholm R., Strandberg U. Thyroglobulin biosynthesis in the rat thyroid. J Ultrastruct Res. 1967 Sep;20(1):103–110. doi: 10.1016/s0022-5320(67)80039-x. [DOI] [PubMed] [Google Scholar]
  8. Eylar E. H. On the biological role of glycoproteins. J Theor Biol. 1966 Jan;10(1):89–113. doi: 10.1016/0022-5193(66)90179-2. [DOI] [PubMed] [Google Scholar]
  9. GODMAN G. C., LANE N. ON THE SITE OF SULFATION IN THE CHONDROCYTE. J Cell Biol. 1964 Jun;21:353–366. doi: 10.1083/jcb.21.3.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GOTTSCHALK A., ADA G. L. The separation and quantitative determination of the component sugars of mucoproteins. Biochem J. 1956 Apr;62(4):681–686. doi: 10.1042/bj0620681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Herscovics A. Biosynthesis of thyroglobulin. Incorporation of [1-14C] galactose, [1-14C] manose and [4,5-3H2] leucine into soluble proteins by rat thyroids in vitro. Biochem J. 1969 May;112(5):709–719. doi: 10.1042/bj1120709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hodson S., Marshall J. Tyrosine incorporation into the rabbit retina. J Cell Biol. 1967 Dec;35(3):722–726. doi: 10.1083/jcb.35.3.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kopriwa B M. A semiautomatic instrument for the radioautographic coating technique. J Histochem Cytochem. 1966 Dec;14(12):923–928. doi: 10.1177/14.12.923. [DOI] [PubMed] [Google Scholar]
  14. LACOMBE G., MICHEL R. Sur la caractère glycoprotéidique de la thyroglobuline (porc). C R Seances Soc Biol Fil. 1955 May;149(9-10):888–890. [PubMed] [Google Scholar]
  15. LEBLOND C. P., EVERETT N. B., SIMMONS B. Sites of protein synthesis as shown by radioautography after administration of S35-labelled methionine. Am J Anat. 1957 Sep;101(2):225–271. doi: 10.1002/aja.1001010203. [DOI] [PubMed] [Google Scholar]
  16. Lawford G. R., Schachter H. Biosynthesis of glycoprotein by liver. The incorporation in vivo of 14C-glucosamine into protein-bound hexosamine and sialic acid of rat liver subcellular fractions. J Biol Chem. 1966 Nov 25;241(22):5408–5418. [PubMed] [Google Scholar]
  17. Lissitzky S., Roques M., Torresani J., Simon C. Biosynthèse, iodation et hétérogénéité de la thyroglobuline. Bull Soc Chim Biol (Paris) 1965;47(11):1999–2037. [PubMed] [Google Scholar]
  18. Lissitzky S., Roques M., Torresani J., Simon C., Bouchilloux S. Iodination and biosynthesis of rat thyroglobulin. Biochem Biophys Res Commun. 1964 Jun 15;16(3):249–253. doi: 10.1016/0006-291x(64)90334-1. [DOI] [PubMed] [Google Scholar]
  19. Louisot P., Frot-Coutaz J., Bertagnolio G., Got R., Colobert L. The incorporation of 1-14C-D-glucosamine into subcellular fractions of rat intestinal mucosa. Biochem Biophys Res Commun. 1967 Aug 7;28(3):385–389. doi: 10.1016/0006-291x(67)90322-1. [DOI] [PubMed] [Google Scholar]
  20. MOLNAR J., ROBINSON G. B., WINZLER R. J. BIOSYNTHESIS OF GLYCOPROTEINS. IV. THE SUBCELLULAR SITES OF INCORPORATION OF GLUCOSAMINE-1-14-C INTO GLYCOPROTEIN RAT LIVER. J Biol Chem. 1965 May;240:1882–1888. [PubMed] [Google Scholar]
  21. NADLER N. J., YOUNG B. A., LEBLOND C. P., MITMAKER B. ELABORATION OF THYROGLOBULIN IN THE THYROID FOLLICLE. Endocrinology. 1964 Mar;74:333–354. doi: 10.1210/endo-74-3-333. [DOI] [PubMed] [Google Scholar]
  22. Neutra M., Leblond C. P. Radioautographic comparison of the uptake of galactose-H and glucose-H3 in the golgi region of various cells secreting glycoproteins or mucopolysaccharides. J Cell Biol. 1966 Jul;30(1):137–150. doi: 10.1083/jcb.30.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Neutra M., Leblond C. P. Synthesis of the carbohydrate of mucus in the golgi complex as shown by electron microscope radioautography of goblet cells from rats injected with glucose-H3. J Cell Biol. 1966 Jul;30(1):119–136. doi: 10.1083/jcb.30.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Northcote D. H., Pickett-Heaps J. D. A function of the Golgi apparatus in polysaccharide synthesis and transport in the root-cap cells of wheat. Biochem J. 1966 Jan;98(1):159–167. doi: 10.1042/bj0980159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nunez J., Mauchamp J., Macchia V., Roche J. Biosynthèse in vitro d'hormones doublement marquées dans des coupes de corps thyroïde. II. biosynthèse d'une préthyroglobuline non iodée. Biochim Biophys Acta. 1965 Sep 13;107(2):247–256. [PubMed] [Google Scholar]
  26. Nunez J., Pavlovic-Hournac M., Rappaport L., Roche J. Synthèse in vivo et in vitro de la thyroglubuline et de ses précurseurs chez la rat. Bull Soc Chim Biol (Paris) 1967 Nov 10;49(10):1295–1308. [PubMed] [Google Scholar]
  27. PETERSON M., LEBLOND C. P. SYNTHESIS OF COMPLEX CARBOHYDRATES IN THE GOLGI REGION, AS SHOWN BY RADIOAUTOGRAPHY AFTER INJECTION OF LABELED GLUCOSE. J Cell Biol. 1964 Apr;21:143–148. doi: 10.1083/jcb.21.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Peters T., Jr, Ashley C. A. An artefact in radioautography due to binding of free amino acids to tissues by fixatives. J Cell Biol. 1967 Apr;33(1):53–60. doi: 10.1083/jcb.33.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. SALPETER M. M., BACHMANN L. AUTORADIOGRAPHY WITH THE ELECTRON MICROSCOPE. A PROCEDURE FOR IMPROVING RESOLUTION, SENSITIVITY, AND CONTRAST. J Cell Biol. 1964 Aug;22:469–477. doi: 10.1083/jcb.22.2.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. SEED R. W., GOLDBERG I. H. BIOSYNTHESIS OF THYROGLOBULIN. II. ROLE OF SUBUNITS, IODINATION, AND RIBONUCLEIC ACID SYNTHESIS. J Biol Chem. 1965 Feb;240:764–773. [PubMed] [Google Scholar]
  32. SEED R. W., GOLDBERG I. H. BIOSYNTHESIS OF THYROGLOBULIN: RELATIONSHIP TO RNA-TEMPLATE AND PRECURSOR PROTEIN. Proc Natl Acad Sci U S A. 1963 Aug;50:275–282. doi: 10.1073/pnas.50.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. SELLIN H. G., GOLDBERG I. H. BIOSYNTHESIS OF THYROGLOBULIN. 3. INTRACELLULAR LOCALIZATION AND PROPERTIES OF LABELED THYROID PROTEINS. J Biol Chem. 1965 Feb;240:774–781. [PubMed] [Google Scholar]
  34. SPIRO R. G., SPIRO M. J. THE CARBOHYDRATE COMPOSITION OF THE THYROGLOBULINS FROM SEVERAL SPECIES. J Biol Chem. 1965 Mar;240:997–1001. [PubMed] [Google Scholar]
  35. SPIRO R. G. THE CARBOHYDRATE UNITS OF THYROGLOBULIN. J Biol Chem. 1965 Apr;240:1603–1610. [PubMed] [Google Scholar]
  36. Spiro R. G., Spiro M. J. Glycoprotein biosynthesis: studies on thyroglobulin. Characterization of a particulate precursor and radioisotope incorporation by thyroid slices and particle systems. J Biol Chem. 1966 Mar 25;241(6):1271–1282. [PubMed] [Google Scholar]
  37. Thompson J. A., Goldberg I. H. Biosynthesis of thyroglobulin and its subunits in vivo in the rat thyroid gland. Endocrinology. 1968 Apr;82(4):805–817. doi: 10.1210/endo-82-4-805. [DOI] [PubMed] [Google Scholar]
  38. UJEJSKI L., GLEGG R. E. Carbohydrates in thyroglobulin and the lens capsule. Can J Biochem Physiol. 1955 Mar;33(2):199–201. [PubMed] [Google Scholar]
  39. Vecchio G., Salvatore M., Salvatore G. Biosynthesis of thyroglobulin in vivo: formation and polymerization of subunits in the rat and guinea pig. Biochem Biophys Res Commun. 1966 Nov 22;25(4):402–408. doi: 10.1016/0006-291x(66)90219-1. [DOI] [PubMed] [Google Scholar]
  40. Yarmolinsky M. B., Haba G. L. INHIBITION BY PUROMYCIN OF AMINO ACID INCORPORATION INTO PROTEIN. Proc Natl Acad Sci U S A. 1959 Dec;45(12):1721–1729. doi: 10.1073/pnas.45.12.1721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Youson J., van Heyningen H. Dense granules (lysosomes?) and crystals in the thyroids of senile rats. Am J Anat. 1968 Mar;122(2):377–395. doi: 10.1002/aja.1001220213. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES