Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1969 Nov 1;43(2):275–288. doi: 10.1083/jcb.43.2.275

CYTOCHEMICAL LOCALIZATION OF PEROXIDATIC ACTIVITY OF CATALASE IN RAT HEPATIC MICROBODIES (PEROXISOMES)

H Dariush Fahimi 1
PMCID: PMC2107860  PMID: 4186511

Abstract

Prominent staining of rat hepatic microbodies was obtained by incubating sections of aldehyde-fixed rat liver in a modified Graham and Karnovsky's medium for ultrastructural demonstration of peroxidase activity. The electron-opaque reaction product was deposited uniformly over the matrix of the microbodies. The microbodies were identified by their size, shape, presence of tubular nucleoids, and other morphologic characteristics, and by their relative numerical counts. The staining reaction was inhibited by the catalase inhibitor, aminotriazole, and by KCN, azide, high concentrations of H2O2, and by boiling of sections. These inhibition studies suggest that the peroxidatic activity of microbody catalase is responsible for the staining reaction. In the absence of exogenous H2O2 appreciable staining of microbodies was noted only after prolonged incubation. Addition of sodium pyruvate, which inhibits endogenous generation of H2O2 by tissue oxidases, or of crystalline catalase, which decomposes such tissue-generated H2O2, completely abolished microbody staining in the absence of H2O2. Neither diaminobenzidine nor the product of its oxidation had any affinity to bind nonenzymatically to microbody catalase and thus stain these organelles. The staining of microbodies was optimal at alkaline pH of 8.5. The biological significance of this alkaline pH in relation to the similar pH optima of several microbody oxidases is discussed. In addition to staining of microbodies, a heat-resistant peroxidase activity is seen in some of the peribiliary dense bodies. The relation of this reaction to the peroxidase activity of lipofuscin pigment granules is discussed.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AEBI H. [Mechanism and biological role of the peroxidase action of catalase]. Bull Soc Chim Biol (Paris) 1960;42:187–207. [PubMed] [Google Scholar]
  2. Allen J. M., Beard M. E. Alpha-hydroxy acid oxidase: localization in renal microbodies. Science. 1965 Sep 24;149(3691):1507–1509. doi: 10.1126/science.149.3691.1507. [DOI] [PubMed] [Google Scholar]
  3. BERNHARD W., ROUILLER C. Microbodies and the problem of mitochondrial regeneration in liver cells. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):355–360. doi: 10.1083/jcb.2.4.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baudhuin P., Beaufay H., De Duve C. Combined biochemical and morphological study of particulate fractions from rat liver. Analysis of preparations enriched in lysosomes or in particles containing urate oxidase, D-amino acid oxidase, and catalase. J Cell Biol. 1965 Jul;26(1):219–243. doi: 10.1083/jcb.26.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CHANCE B. Effect of pH upon the reaction kinetics of the enzyme-substrate compounds of catalase. J Biol Chem. 1952 Feb;194(2):471–481. [PubMed] [Google Scholar]
  6. DE DUVE C., BEAUFAY H., JACQUES P., RAHMAN-LI Y., SELLINGER O. Z., WATTIAUX R., DE CONINCK S. Intracellular localization of catalase and of some oxidases in rat liver. Biochim Biophys Acta. 1960 May 6;40:186–187. doi: 10.1016/0006-3002(60)91338-x. [DOI] [PubMed] [Google Scholar]
  7. DIXON M., KLEPPE K. D-AMINO ACID OXIDASE. 3. EFFECT OF PH. Biochim Biophys Acta. 1965 Mar 22;96:383–389. doi: 10.1016/0005-2787(65)90558-7. [DOI] [PubMed] [Google Scholar]
  8. De Duve C., Baudhuin P. Peroxisomes (microbodies and related particles). Physiol Rev. 1966 Apr;46(2):323–357. doi: 10.1152/physrev.1966.46.2.323. [DOI] [PubMed] [Google Scholar]
  9. De Duve C. The separation and characterization of subcellular particles. Harvey Lect. 1965;59:49–87. [PubMed] [Google Scholar]
  10. ESSNER E., NOVIKOFF A. B. Human hepatocellular pigments and lysosomes. J Ultrastruct Res. 1960 Jun;3:374–391. doi: 10.1016/s0022-5320(60)90016-2. [DOI] [PubMed] [Google Scholar]
  11. Fahimi H. D. Perfusion and immersion fixation of rat liver with glutaraldehyde. Lab Invest. 1967 May;16(5):736–750. [PubMed] [Google Scholar]
  12. Frederick S. E., Newcomb E. H. Cytochemical localization of catalase in leaf microbodies (peroxisomes). J Cell Biol. 1969 Nov;43(2):343–353. doi: 10.1083/jcb.43.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. GANSLER H., ROUILLER C. Modifications physiologiques et pathologiques du chondriome; etude au microscope électronique. Schweiz Z Pathol Bakteriol. 1956;19(2):217–243. [PubMed] [Google Scholar]
  14. Goldfischer S., Villaverde H., Forschirm R. The demonstration of acid hydrolase, thermostable reduced diphosphopyridine nucleotide tetrazolium reductase and peroxidase activities in human lipofuscin pigment granules. J Histochem Cytochem. 1966 Sep;14(9):641–652. doi: 10.1177/14.9.641. [DOI] [PubMed] [Google Scholar]
  15. Goodman J. I., Tephly T. R. The role of hepatic microbody and soluble oxidases in the peroxidation of methanol in the rat and monkey. Mol Pharmacol. 1968 Sep;4(5):492–501. [PubMed] [Google Scholar]
  16. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  17. Graham R. C., Jr, Karnovsky M. J. The histochemical demonstration of uricase activity. J Histochem Cytochem. 1965 Jul-Aug;13(6):448–453. doi: 10.1177/13.6.448. [DOI] [PubMed] [Google Scholar]
  18. HRUBAN Z., SWIFT H. URICASE: LOCALIZATION IN HEPATIC MICROBODIES. Science. 1964 Dec 4;146(3649):1316–1318. doi: 10.1126/science.146.3649.1316. [DOI] [PubMed] [Google Scholar]
  19. Hruban Z., Swift H., Rechcigl M., Jr Fine structure of transplantable hepatomas of the rat. J Natl Cancer Inst. 1965 Sep;35(3):459–495. doi: 10.1093/jnci/35.3.459. [DOI] [PubMed] [Google Scholar]
  20. Hruban Z., Swift H., Slesers A. Ultrastructural alterations of hepatic microbodies. Lab Invest. 1966 Dec;15(12):1884–1901. [PubMed] [Google Scholar]
  21. KEILIN D., HARTREE E. F. Catalase, peroxidase and metmyoglobin as catalysts of coupled peroxidatic reactions. Biochem J. 1955 Jun;60(2):310–325. doi: 10.1042/bj0600310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. KUN E., DECHARY J. M., PITOT H. C. The oxidation of glycolic acid by a liver enzyme. J Biol Chem. 1954 Sep;210(1):269–280. [PubMed] [Google Scholar]
  23. Keilin D., Hartree E. F. Properties of catalase. Catalysis of coupled oxidation of alcohols. Biochem J. 1945;39(4):293–301. [PMC free article] [PubMed] [Google Scholar]
  24. LOUD A. V., BARANY W. C., PACK B. A. QUANTITATIVE EVALUATION OF CYTOPLASMIC STRUCTURES IN ELECTRON MICROGRAPHS. Lab Invest. 1965 Jun;14:996–1008. [PubMed] [Google Scholar]
  25. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Leighton F., Poole B., Beaufay H., Baudhuin P., Coffey J. W., Fowler S., De Duve C. The large-scale separation of peroxisomes, mitochondria, and lysosomes from the livers of rats injected with triton WR-1339. Improved isolation procedures, automated analysis, biochemical and morphological properties of fractions. J Cell Biol. 1968 May;37(2):482–513. doi: 10.1083/jcb.37.2.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. MAHLER H. R., HUBSCHER G., BAUM R. Studies on uricase. I. Preparation, purification, and properties of a cuproprotein. J Biol Chem. 1955 Oct;216(2):625–641. [PubMed] [Google Scholar]
  28. MARGOLIASH E., NOVOGRODSKY A. A study of the inhibition of catalase by 3-amino-1:2:4:-triazole. Biochem J. 1958 Mar;68(3):468–475. doi: 10.1042/bj0680468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. MARGOLIASH E., NOVOGRODSKY A., SCHEJTER A. Irreversible reaction of 3-amino-1:2:4-triazole and related inhibitors with the protein of catalase. Biochem J. 1960 Feb;74:339–348. doi: 10.1042/bj0740339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Morikawa S., Harada T. Immunohistochemical localization of catalase in mammalian tissues. J Histochem Cytochem. 1969 Jan;17(1):30–35. doi: 10.1177/17.1.30. [DOI] [PubMed] [Google Scholar]
  31. NISHIMURA E. T., KOBARA T. Y., DRURY J. J. LOCALIZATION OF CATALASE IN TISSUES BY THE FLUORESCENT ANTIBODY TECHNIQUE. Lab Invest. 1964 Jan;13:69–76. [PubMed] [Google Scholar]
  32. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Seligman A. M., Karnovsky M. J., Wasserkrug H. L., Hanker J. S. Nondroplet ultrastructural demonstration of cytochrome oxidase activity with a polymerizing osmiophilic reagent, diaminobenzidine (DAB). J Cell Biol. 1968 Jul;38(1):1–14. doi: 10.1083/jcb.38.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Svoboda D. J., Azarnoff D. L. Response of hepatic microbodies to a hypolipidemic agent, ethyl chlorophenoxyisobutyrate (CPIB). J Cell Biol. 1966 Aug;30(2):442–450. doi: 10.1083/jcb.30.2.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tsukada H., Mochizuki Y., Fujiwara S. The nucleoids of rat liver cell microbodies. Fine structure and enzymes. J Cell Biol. 1966 Mar;28(3):449–460. doi: 10.1083/jcb.28.3.449. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES