Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1970 Sep 1;46(3):533–543. doi: 10.1083/jcb.46.3.533

THE RELATIONSHIP BETWEEN DEOXYRIBONUCLEIC ACID REPLICATION AND CELL DIVISION IN HEAT-SYNCHRONIZED TETRAHYMENA

William R Jeffery 1, Kenneth D Stuart 1, Joseph Frankel 1
PMCID: PMC2107880  PMID: 5527238

Abstract

The effect of supraoptimal temperature on macronuclear DNA synthesis in Tetrahymena was studied by radioautography during prolonged heat and heat-shock synchronization treatments. Prolonged heat treatments (34°C) delayed the initiation of S, but did not appreciably delay DNA synthesis in progress. Return to optimal temperature (28°C) 50 or 100 min later resulted in initiation of S, in delayed cells, at a rate greater than in controls. During the synchronization treatment, most cells were unable to enter S during a heat shock, but initiated S with a slight delay during the following intershock period. These cells were not appreciably delayed in completion of S by subsequent heat shocks. Supraoptimal temperature appears to affect the DNA synthetic cycle near the G1 to S transition. Cells subjected to the heat-shock treatment in early G1 all participated in one S period, and many underwent a succession of two S periods. DNA synthesis occurred in about 50% of the cells between EST and the first synchronous division, with the likelihood of DNA synthesis becoming greater the longer the interval between these two events. In some cells no detectable DNA synthesis occurred between EST and the second synchronous division. It was concluded that a precise temporal alternation of DNA replication and cell division is not obligatory in Tetrahymena.

Full Text

The Full Text of this article is available as a PDF (792.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CERRONI R. E., ZEUTHEN E. Asynchrony of nuclear incorporation of tritiated thymidine into Tetrahymena cells synchronized for division. C R Trav Lab Carlsberg. 1962;32:499–511. [PubMed] [Google Scholar]
  2. Cameron I. L. A periodicity of tritiated-thymidine incorporation into cytoplasmic deoxyribonucleic acid during the cell cycle of Tetrahymena pyriformis. Nature. 1966 Feb 5;209(5023):630–631. doi: 10.1038/209630b0. [DOI] [PubMed] [Google Scholar]
  3. Cameron I. L., Nachtwey D. S. DNA synthesis in relation to cell division in Tetrahymena pyriformis. Exp Cell Res. 1967 May;46(2):385–395. doi: 10.1016/0014-4827(67)90075-4. [DOI] [PubMed] [Google Scholar]
  4. Cleffmann G. Bildung zusätzlicher DNS nach Blockierung der Zellteilung von Tetrahymena durch Actinomycin. Z Zellforsch Mikrosk Anat. 1966;70(3):290–297. [PubMed] [Google Scholar]
  5. Cleffmann G. Regulierung der DNS-Menge im Makronucleus von Tetrahymena. Exp Cell Res. 1968 Apr;50(1):193–207. doi: 10.1016/0014-4827(68)90407-2. [DOI] [PubMed] [Google Scholar]
  6. Frankel J. The effect of nucleic acid antagonists on cell division and oral organelle development in Tetrahymena pyriformis. J Exp Zool. 1965 Jun;159(1):113–147. doi: 10.1002/jez.1401590109. [DOI] [PubMed] [Google Scholar]
  7. Hjelm K. K., Zeuthen E. Synchronous DNA synthesis following heat-synchronized cell division in Tetrahymena. Exp Cell Res. 1967 Oct;48(1):231–232. doi: 10.1016/0014-4827(67)90311-4. [DOI] [PubMed] [Google Scholar]
  8. Hjelm K. K., Zeuthen E. Synchronous DNA-synthesis induced by synchronous cell division in Tetrahymena. C R Trav Lab Carlsberg. 1967;36(8):127–160. [PubMed] [Google Scholar]
  9. Jerka-Dziadosz M., Frankel J. The control of DNA synthesis in macronuclei and micronuclei of a hypotrich ciliate: a comparison of normal and regenerating cells. J Exp Zool. 1970 Jan;173(1):1–22. doi: 10.1002/jez.1401730102. [DOI] [PubMed] [Google Scholar]
  10. PATAU K., DAS N. K. The relation of DNA synthesis and mitosis in tobacco pith tissue cultured in vitro. Chromosoma. 1961;11:553–572. doi: 10.1007/BF00328674. [DOI] [PubMed] [Google Scholar]
  11. PRESCOTT D. M. Change in the physiological state of a cell population as a function of culture growth and age (Tetrahymena geleit). Exp Cell Res. 1957 Feb;12(1):126–134. doi: 10.1016/0014-4827(57)90300-2. [DOI] [PubMed] [Google Scholar]
  12. PRESCOTT D. M. Variations in the individual generation times of Tetrahymena geleii HS. Exp Cell Res. 1959 Feb;16(2):279–284. doi: 10.1016/0014-4827(59)90255-1. [DOI] [PubMed] [Google Scholar]
  13. Parsons J. A. Mitochondrial incorporation of tritiated thymidine in Tetrahymena pyriformis. J Cell Biol. 1965 Jun;25(3):641–646. doi: 10.1083/jcb.25.3.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. RASCH E., SWIFT H., KLEIN R. M. Nucleoprotein changes in plant tumor growth. J Biophys Biochem Cytol. 1959 Aug;6(1):11–34. doi: 10.1083/jcb.6.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. RUECKERT R. R., MUELLER G. C. Studies on unbalanced growth in tissue culture. I. Induction and consequences of thymidine deficiency. Cancer Res. 1960 Dec;20:1584–1591. [PubMed] [Google Scholar]
  16. SACHSENMAIER W., RUSCH H. P. THE EFFECT OF 5-FLUORO-2'-DEOXYURIDINE ON SYNCHRONOUS MITOSIS IN PHYSARUM POLYCEPHALUM. Exp Cell Res. 1964 Oct;36:124–133. doi: 10.1016/0014-4827(64)90166-1. [DOI] [PubMed] [Google Scholar]
  17. SCHERBAUM O. H., LOUDERBACK A. L., JAHN T. L. DNA synthesis, phosphate content and growth in mass and volume in synchronously dividing cells. Exp Cell Res. 1959 Aug;18:150–166. doi: 10.1016/0014-4827(59)90298-8. [DOI] [PubMed] [Google Scholar]
  18. SCHERBAUM O., ZEUTHEN E. Induction of synchronous cell division in mass cultures of Tetrahymena piriformis. Exp Cell Res. 1954 Feb;6(1):221–227. doi: 10.1016/0014-4827(54)90164-0. [DOI] [PubMed] [Google Scholar]
  19. Sedgley N. N., Stone G. E. DNA synthesis in vinblastine synchronized Tetrahymena. Exp Cell Res. 1969 Jul;56(1):174–177. doi: 10.1016/0014-4827(69)90416-9. [DOI] [PubMed] [Google Scholar]
  20. Stone G. E., Miller O. L., Jr A stable mitochondrial DNA in Tetrahymena pyriformis. J Exp Zool. 1965 Jun;159(1):33–37. doi: 10.1002/jez.1401590104. [DOI] [PubMed] [Google Scholar]
  21. THORMAR H. Delayed division in tetrahymena pyriformis induced by temperature changes. C R Trav Lab Carlsberg. 1959;31:207–225. [PubMed] [Google Scholar]
  22. Wand M., Zeuthen E., Evans E. A. Tritiated thymidine: effect of decomposition by self-radiolysis on specificity as a tracer for DNA synthesis. Science. 1967 Jul 28;157(3787):436–438. doi: 10.1126/science.157.3787.436. [DOI] [PubMed] [Google Scholar]
  23. Wykes J. R., Prescott D. M. The metabolism of pyrimidine compounds by Tetrahymena pyriformis. J Cell Physiol. 1968 Dec;72(3):173–184. doi: 10.1002/jcp.1040720305. [DOI] [PubMed] [Google Scholar]
  24. Zeuthen E. Thymine starvation by inhibition of uptake and synthesis of thymine-compounds in Tetrahymena. Exp Cell Res. 1968 Apr;50(1):37–46. doi: 10.1016/0014-4827(68)90391-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES