Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1970 May 1;45(2):334–354. doi: 10.1083/jcb.45.2.334

THE ASSOCIATION OF A CLASS OF SALTATORY MOVEMENTS WITH MICROTUBULES IN CULTURED CELLS

Jerome J Freed 1, Marcia M Lebowitz 1
PMCID: PMC2107893  PMID: 5513607

Abstract

Particulate structures in the cytoplasm of HeLa and other cultured cells in interphase undergo rapid individual linear displacements (long saltatory movements, LSM). By the use of time-lapse microscopy to locate saltating particles prior to fixation and histochemical examination of the cells, structures of several kinds have been shown to move in this manner. Elements that show LSM include lysosomes, pinosomes, ingested carbon particles, lipoidal granules, and unidentified particles that appear as bright objects in positive phase contrast. The pattern of movement of the particles suggests the presence of linear guiding elements radially disposed from the cytocenter (centriole region). The participation of microtubules in these movements is inferred from the observation that LSM cease after treatment with drugs which depolymerize microtubules, i.e., colchicine, Vinblastine, and podophyllin. The directions of the microtubules in the cytoplasm of HeLa cells found by electron microscopy are consistent with the aster-like configuration predicted from study of LSM. Further support for this arrangement of cytoplasmic microtubules is provided by light microscope observations of colchicine-sensitive radial arrays of acid phosphatase granules in the cytoplasm of some cell lines.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BYERS B., PORTER K. R. ORIENTED MICROTUBULES IN ELONGATING CELLS OF THE DEVELOPING LENS RUDIMENT AFTER INDUCTION. Proc Natl Acad Sci U S A. 1964 Oct;52:1091–1099. doi: 10.1073/pnas.52.4.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bajer A. Chromosome movement and fine structure of the mitotic spindle. Symp Soc Exp Biol. 1968;22:285–310. [PubMed] [Google Scholar]
  3. Behnke O., Zelander T. Filamentous substructure of microtubules of the marginal bundle of mammalian blood platelets. J Ultrastruct Res. 1967 Jul;19(1):147–165. doi: 10.1016/s0022-5320(67)80065-0. [DOI] [PubMed] [Google Scholar]
  4. Bensch K. G., Malawista S. E. Microtubule crystals: a new biophysical phenomenon induced by Vinca alkaloids. Nature. 1968 Jun 22;218(5147):1176–1177. doi: 10.1038/2181176a0. [DOI] [PubMed] [Google Scholar]
  5. Borisy G. G., Taylor E. W. The mechanism of action of colchicine. Binding of colchincine-3H to cellular protein. J Cell Biol. 1967 Aug;34(2):525–533. doi: 10.1083/jcb.34.2.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brinkley B. R., Murphy P., Richardson L. C. Procedure for embedding in situ selected cells cultured in vitro. J Cell Biol. 1967 Oct;35(1):279–283. doi: 10.1083/jcb.35.1.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deysson G. Autimitotic substances. Int Rev Cytol. 1968;24:99–148. [PubMed] [Google Scholar]
  8. DuPraw E. J. The organization of honey bee embryonic cells. I. Microtubules and amoeboid activity. Dev Biol. 1965 Aug;12(1):53–71. doi: 10.1016/0012-1606(65)90020-5. [DOI] [PubMed] [Google Scholar]
  9. EAGLE H. Amino acid metabolism in mammalian cell cultures. Science. 1959 Aug 21;130(3373):432–437. doi: 10.1126/science.130.3373.432. [DOI] [PubMed] [Google Scholar]
  10. FREED J. J. Cell culture perfusion chamber: adaptation for microscopy of clonal growth. Science. 1963 Jun 21;140(3573):1334–1335. doi: 10.1126/science.140.3573.1334. [DOI] [PubMed] [Google Scholar]
  11. Holmes K. V., Choppin P. W. On the role of microtubules in movement and alignment of nuclei in virus-induced syncytia. J Cell Biol. 1968 Dec;39(3):526–543. doi: 10.1083/jcb.39.3.526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ishikawa H., Bischoff R., Holtzer H. Mitosis and intermediate-sized filaments in developing skeletal muscle. J Cell Biol. 1968 Sep;38(3):538–555. doi: 10.1083/jcb.38.3.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Klaus S. N. The effect of colchicine on mosaic patterns in cultured cells. J Cell Biol. 1968 Feb;36(2):399–402. doi: 10.1083/jcb.36.2.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lasek R. J. Bidirectional transport of radioactively labelled axoplasmic components. Nature. 1967 Dec 23;216(5121):1212–1214. doi: 10.1038/2161212a0. [DOI] [PubMed] [Google Scholar]
  15. MASER M. D., PHILPOTT C. W. MARGINAL BANDS IN NUCLEATED ERYTHROCYTES. Anat Rec. 1964 Dec;150:365–381. doi: 10.1002/ar.1091500405. [DOI] [PubMed] [Google Scholar]
  16. MAZIA D., ZIMMERMAN A. M. SH compounds in mitosis. II. The effect of mercaptoethanol on the structure of the mitotic apparatus in sea urchin eggs. Exp Cell Res. 1958 Aug;15(1):138–153. doi: 10.1016/0014-4827(58)90070-3. [DOI] [PubMed] [Google Scholar]
  17. MUNRO T. R., DANIEL M. R., DINGLE J. T. LYSOSOMES IN CHINESE HAMSTER FIBROBLASTS IN CULTURE. Exp Cell Res. 1964 Sep;35:515–530. doi: 10.1016/0014-4827(64)90140-5. [DOI] [PubMed] [Google Scholar]
  18. Malawista S. E. Colchicine: a common mechanism for its anti-inflammatory and anti-mitotic effects. Arthritis Rheum. 1968 Apr;11(2):191–197. doi: 10.1002/art.1780110210. [DOI] [PubMed] [Google Scholar]
  19. Nachmias V. T. Studies on streaming. I. Inhibition of protoplasmic streaming and cytokinesis of Chaos chaos by adenosine triphosphate and reversal by magnesium and calcium ions. J Cell Biol. 1969 Jan;40(1):160–166. doi: 10.1083/jcb.40.1.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. ROBBINS E., GONATAS N. K. HISTOCHEMICAL AND ULTRASTRUCTURAL STUDIES ON HELA CELL CULTURES EXPOSED TO SPINDLE INHIBITORS WITH SPECIAL REFERENCE TO THE INTERPHASE CELL. J Histochem Cytochem. 1964 Sep;12:704–711. doi: 10.1177/12.9.704. [DOI] [PubMed] [Google Scholar]
  21. ROSE G. G. Observations on the dynamics of pinocytic and variant pinocytic (VP) cells in Gey's human malignant epidermoid strain Hela. Tex Rep Biol Med. 1957;15(2):313–331. [PubMed] [Google Scholar]
  22. Rosenbaum J. L., Carlson K. Cilia regeneration in Tetrahymena and its inhibition by colchicine. J Cell Biol. 1969 Feb;40(2):415–425. doi: 10.1083/jcb.40.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shelanski M. L., Taylor E. W. Properties of the protein subunit of central-pair and outer-doublet microtubules of sea urchin flagella. J Cell Biol. 1968 Aug;38(2):304–315. doi: 10.1083/jcb.38.2.304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tilney L. G., Gibbins J. R. Microtubules in the formation and development of the primary mesenchyme in Arbacia punctulata. II. An experimental analysis of their role in development and maintenance of cell shape. J Cell Biol. 1969 Apr;41(1):227–250. doi: 10.1083/jcb.41.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tilney L. G., Porter K. R. Studies on microtubules in Heliozoa. I. The fine structure of Actinosphaerium nucleofilum (Barrett), with particular reference to the axial rod structure. Protoplasma. 1965;60(4):317–344. doi: 10.1007/BF01247886. [DOI] [PubMed] [Google Scholar]
  26. Wade J., Satir P. The effect of mercaptoethanol on flagellar morphogenesis in the amoeboflagellate Naegleria gruberi (Schardinger). Exp Cell Res. 1968 Apr;50(1):81–92. doi: 10.1016/0014-4827(68)90396-0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES