Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1970 May 1;45(2):291–305. doi: 10.1083/jcb.45.2.291

BIOCHEMICAL AND ULTRASTRUCTURAL PROPERTIES OF A MITOCHONDRIAL INNER MEMBRANE FRACTION DEFICIENT IN OUTER MEMBRANE AND MATRIX ACTIVITIES

T L Chan 1, John W Greenawalt 1, Peter L Pedersen 1
PMCID: PMC2107903  PMID: 4254678

Abstract

Treatment of the inner membrane matrix fraction of rat liver mitochondria with the nonionic detergent Lubrol WX solubilized about 70% of the total protein and 90% or more of the following matrix activities: malate dehydrogenase, glutamate dehydrogenase, and isocitrate dehydrogenase (NADP). The Lubrol-insoluble fraction was enriched in cytochromes, phospholipids, and a Mg++-stimulated ATPase activity. Less than 2% of the total mitochondrial activity of monoamine oxidase, an outer membrane marker, or adenylate kinase, an intracristal space marker could be detected in this inner membrane fraction. Electron micrographs of negatively stained preparations showed vesicles (≤0.4 µ diameter) literally saturated on the periphery with the 90 A ATPase particles. These inner membrane vesicles, which appeared for the most part to be inverted with respect to the normal inner membrane configuration in intact mitochondria, retained the succinicoxidase portion of the electron-transport chain, an intact phosphorylation site II with a high affinity for ADP, and the capacity to accumulate Ca++. A number of biochemical properties characteristic of intact mitochondria and the inner membrane matrix fraction, however, were either absent or markedly deficient in the inner membrane vesicles. These included stimulation of respiration by either ADP or 2,4-dinitrophenol, oligomycin-sensitive ADP-ATP exchange activity, atractyloside sensitivity of adenine nucleotide requiring reactions, and a stimulation of the Mg++-ATPase by 2,4-dinitrophenol.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRADLEY L. B., JACOB M., JACOBS E. E., SANADI D. R. Uncoupling of oxidative phosphorylation by cadmium ion. J Biol Chem. 1956 Nov;223(1):147–156. [PubMed] [Google Scholar]
  2. Beattie D. S. The biosynthesis of the protein and lipid components of the inner and outer membranes of rat liver mitochondria. Biochem Biophys Res Commun. 1969 Apr 10;35(1):67–74. doi: 10.1016/0006-291x(69)90483-5. [DOI] [PubMed] [Google Scholar]
  3. CHANCE B., WILLIAMS G. R. The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem. 1956;17:65–134. doi: 10.1002/9780470122624.ch2. [DOI] [PubMed] [Google Scholar]
  4. Carafoli E., Gamble R. L., Lehninger A. L. Rebounds and oscillations in respiration-linked movements of Ca++ and H+ in rat liver mitochondria. J Biol Chem. 1966 Jun 10;241(11):2644–2652. [PubMed] [Google Scholar]
  5. Catterall W. A., Pedersen P. L. Effects of phosphotungstic acid and silicotungstic acid on respiration and integrity of rat liver mitochondria. Biochem Biophys Res Commun. 1970 Feb 6;38(3):400–405. doi: 10.1016/0006-291x(70)90727-8. [DOI] [PubMed] [Google Scholar]
  6. Christiansen R. O., Steensland H., Loyter A., Saltzgaber J., Racker E. Energy-linked ion translocation in submitochondrial particles. II. Properties of submitochondrial particles capable of Ca++ translocation. J Biol Chem. 1969 Aug 25;244(16):4428–4436. [PubMed] [Google Scholar]
  7. DRAHOTA Z., CARAFOLI E., ROSSI C. S., GAMBLE R. L., LEHNINGER A. L. THE STEADY STATE MAINTENANCE OF ACCUMULATED CA++ IN RAT LIVER MITOCHONDRIA. J Biol Chem. 1965 Jun;240:2712–2720. [PubMed] [Google Scholar]
  8. FOLCH J., ASCOLI I., LEES M., MEATH J. A., LeBARON N. Preparation of lipide extracts from brain tissue. J Biol Chem. 1951 Aug;191(2):833–841. [PubMed] [Google Scholar]
  9. GREGG C. T., LEHNINGER A. L. DEPENDENCE OF RESPIRATION OF PHOSPHATE AND PHOSPHATE ACCEPTOR IN SUBMITOCHONDRIAL SYSTEMS. II. SONIC FRAGMENTS. Biochim Biophys Acta. 1963 Oct 8;78:27–44. doi: 10.1016/0006-3002(63)91606-8. [DOI] [PubMed] [Google Scholar]
  10. GREGG C. T. OXIDATIVE PHOSPHORYLATION IN STABLE SONIC FRAGMENTS OF RAT-LIVER MITOCHONDRIA. Biochim Biophys Acta. 1963 Sep 10;74:573–587. doi: 10.1016/0006-3002(63)91409-4. [DOI] [PubMed] [Google Scholar]
  11. Graven S. N., Lardy H. A., Johnson D., Rutter A. Antibiotics as tools for metabolic studies. V. Effect of nonactin, monactin, dinactin, and trinactin on oxidative phosphorylation and adenosine triphosphatase induction. Biochemistry. 1966 May;5(5):1729–1735. doi: 10.1021/bi00869a040. [DOI] [PubMed] [Google Scholar]
  12. Green D. E., Asai J., Harris R. A., Penniston J. T. Conformational basis of energy transformations in membrane systems. 3. Configurational changes in the mitochondrial inner membrane induced by changes in functional states. Arch Biochem Biophys. 1968 May;125(2):684–705. doi: 10.1016/0003-9861(68)90626-7. [DOI] [PubMed] [Google Scholar]
  13. KIELLEY W. W., KIELLEY R. K. Myokinase and adenosinetriphosphatase in oxidative phosphorylation. J Biol Chem. 1951 Aug;191(2):485–500. [PubMed] [Google Scholar]
  14. Kagawa Y., Racker E. Partial resolution of the enzymes catalyzing oxidative phosphorylation. 8. Properties of a factor conferring oligomycin sensitivity on mitochondrial adenosine triphosphatase. J Biol Chem. 1966 May 25;241(10):2461–2466. [PubMed] [Google Scholar]
  15. LARDY H. A., WELLMAN H. The catalytic effect of 2,4-dinitrophenol on adenosinetriphosphate hydrolysis by cell particles and soluble enzymes. J Biol Chem. 1953 Mar;201(1):357–370. [PubMed] [Google Scholar]
  16. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Loyter A., Christiansen R. O., Steensland H., Saltzgaber J., Racker E. Energy-linked ion translocation in submitochondrial particles. I. Ca++ accumulation in submitochondrial particles. J Biol Chem. 1969 Aug 25;244(16):4422–4427. [PubMed] [Google Scholar]
  18. POTTER V. R., SIEKEVITZ P., SIMONSON H. C. Latent adenosinetriphosphatase activity in resting rat liver mitochondria. J Biol Chem. 1953 Dec;205(2):893–908. [PubMed] [Google Scholar]
  19. PULLMAN M. E., PENEFSKY H. S., DATTA A., RACKER E. Partial resolution of the enzymes catalyzing oxidative phosphorylation. I. Purification and properties of soluble dinitrophenol-stimulated adenosine triphosphatase. J Biol Chem. 1960 Nov;235:3322–3329. [PubMed] [Google Scholar]
  20. Papa S., Tager J. M., Guerrieri F., Quagliariello E. Effect of monovalent cations on oxidative phosphorylation in submitochondrial particles. Biochim Biophys Acta. 1969 Jan 14;172(1):184–186. doi: 10.1016/0005-2728(69)90106-6. [DOI] [PubMed] [Google Scholar]
  21. Pedersen P. L., Schnaitman C. A. The oligomycin-sensitive adenosine diphosphate-adenosine triphosphate exchange in an inner membrane matrix fraction of rat liver mitochondria. J Biol Chem. 1969 Sep 25;244(18):5065–5074. [PubMed] [Google Scholar]
  22. ROSSI C. S., LEHNINGER A. L. STOICHIOMETRY OF RESPIRATORY STIMULATION, ACCUMULATION OF CA++ AND PHOSPHATE, AND OXIDATIVE PHOSPHORYLATION IN RAT LIVER MITOCHONDRIA. J Biol Chem. 1964 Nov;239:3971–3980. [PubMed] [Google Scholar]
  23. Rossi C. S., Bielawski J., Lehninger A. L. Separation of H+ and OH- in the extramitochondrial and mitochondrial phases during Ca++-activated electron transport. J Biol Chem. 1966 Apr 25;241(8):1919–1921. [PubMed] [Google Scholar]
  24. SLATER E. C. Mechanism of phosphorylation in the respiratory chain. Nature. 1953 Nov 28;172(4387):975–978. doi: 10.1038/172975a0. [DOI] [PubMed] [Google Scholar]
  25. Schnaitman C. A., Pedersen P. L. Localization of oligomycin-sensitive ADP-ATP exchange activity in rat liver mitochondria. Biochem Biophys Res Commun. 1968 Feb 26;30(4):428–433. doi: 10.1016/0006-291x(68)90762-6. [DOI] [PubMed] [Google Scholar]
  26. Schnaitman C., Erwin V. G., Greenawalt J. W. The submitochondrial localization of monoamine oxidase. An enzymatic marker for the outer membrane of rat liver mitochondria. J Cell Biol. 1967 Mar;32(3):719–735. doi: 10.1083/jcb.32.3.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schnaitman C., Greenawalt J. W. Enzymatic properties of the inner and outer membranes of rat liver mitochondria. J Cell Biol. 1968 Jul;38(1):158–175. doi: 10.1083/jcb.38.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. VASINGTON F. D., MURPHY J. V. Ca ion uptake by rat kidney mitochondria and its dependence on respiration and phosphorylation. J Biol Chem. 1962 Aug;237:2670–2677. [PubMed] [Google Scholar]
  29. Vignais P. V., Duee E. D. Translocation et compartimentation des adénine-nucléotides dans les mitochondries. Bull Soc Chim Biol (Paris) 1966;48(11):1169–1187. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES