Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1970 May 1;45(2):221–234. doi: 10.1083/jcb.45.2.221

COMPARATIVE STUDIES ON MITOCHONDRIA ISOLATED FROM NEURON-ENRICHED AND GLIA-ENRICHED FRACTIONS OF RABBIT AND BEEF BRAIN

Anders Hamberger 1, Christian Blomstrand 1, Albert L Lehninger 1
PMCID: PMC2107910  PMID: 5513605

Abstract

Fractions enriched in neuronal and glial cells were obtained from dispersions of whole beef brain and rabbit cerebral cortex by large-scale density gradient centrifugation procedures. The fractions were characterized by appropriate microscopic observation. Mitochondria were then isolated from these fractions by differential centrifugation of their homogenates. The two different types of mitochondria were characterized with respect to certain enzyme activities, respiratory rate, rate of protein synthesis, and their buoyant density in sucrose gradients. The mitochondria from the neuron-enriched fraction were distinguished by a higher rate of incorporation of amino acids into protein, higher cytochrome oxidase activity, and a higher buoyant density in sucrose density gradients. Mitochondria from the glia-enriched fraction showed relatively high monoamine oxidase and Na+- and K+-stimulated ATPase activities. The rates of oxidation of various substrates and the acceptor control ratios did not differ appreciably between the two types of mitochondria. The difference in the buoyant density of mitochondria isolated from the neuron-enriched and glia-enriched cell fractions was utilized in attempts to separate neuronal and glial mitochondria from the mixed mitochondria obtained from whole brain homogenates in shallow sucrose gradients. The appearance of two peaks of cytochrome oxidase, monoamine oxidase, and protein concentration in such gradients shows the potential feasibility of such an approach.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beattie D. S., Basford R. E. Sodium-stimulated adenosine triphosphatase activity of rat brain mitochondria. J Neurochem. 1968 Apr;15(4):325–353. doi: 10.1111/j.1471-4159.1968.tb11617.x. [DOI] [PubMed] [Google Scholar]
  2. Blomstrand C., Hamberger A. Protein turnover in cell-enriched fractions from rabbit brain. J Neurochem. 1969 Sep;16(9):1401–1407. doi: 10.1111/j.1471-4159.1969.tb05992.x. [DOI] [PubMed] [Google Scholar]
  3. Bradford H. F., Brownlow E. K., Gammack D. B. The distribution of cation-stimulated adenosine triphosphatase in subcellular fractions from bovine cerebral cortex. J Neurochem. 1966 Dec;13(12):1283–1297. doi: 10.1111/j.1471-4159.1966.tb04291.x. [DOI] [PubMed] [Google Scholar]
  4. DE ROBERTIS E., RODRIGUEZ DE LORES ARNAIZ G., SALGANICOFF L., PELLEGRINO DE IRALDI A., ZIEHER L. M. Isolation of synaptic vesicles and structural organization of the acetycholine system within brain nerve endings. J Neurochem. 1963 Apr;10:225–235. doi: 10.1111/j.1471-4159.1963.tb05038.x. [DOI] [PubMed] [Google Scholar]
  5. Eneström S., Hamberger A. Respiration and mitochondrial content in single neurons of the supraoptic nucleus. A correlative study in osmotic stress. J Cell Biol. 1968 Sep;38(3):483–493. doi: 10.1083/jcb.38.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fonnum F. The distribution of glutamate decarboxylase and aspartate transaminase in subcellular fractions of rat and guinea-pig brain. Biochem J. 1968 Jan;106(2):401–412. doi: 10.1042/bj1060401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GRAY E. G., WHITTAKER V. P. The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J Anat. 1962 Jan;96:79–88. [PMC free article] [PubMed] [Google Scholar]
  8. HUDSON G., LAZAROW A., HARTMANN J. F. A quantitative electron microscopic study of mitochondria in motor neurones following axonal section. Exp Cell Res. 1961 Sep;24:440–456. doi: 10.1016/0014-4827(61)90445-1. [DOI] [PubMed] [Google Scholar]
  9. Hajós F., Kerpel-Fronius S. Electron histochemical observation of succinic dehydrogenase activity in various parts of neurons. Exp Brain Res. 1969;8(1):66–78. doi: 10.1007/BF00234926. [DOI] [PubMed] [Google Scholar]
  10. Hamberger A., Gregson N., Lehninger A. L. The effect of acute exercise on amino acid incorporation into mitochondria of rabbit tissues. Biochim Biophys Acta. 1969 Aug 20;186(2):373–383. doi: 10.1016/0005-2787(69)90015-x. [DOI] [PubMed] [Google Scholar]
  11. Hosie R. J. The localization of adenosine triphosphatases in morphologically characterized subcellular fractions of guinea-pig brain. Biochem J. 1965 Aug;96(2):404–412. doi: 10.1042/bj0960404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kurokawa M., Kato M., Sakamoto T. Distribution of sodium-plus-potassium-stimulated adenosine-triphosphatase activity in isolated nerve-ending particles. Biochem J. 1965 Dec;97(3):833–844. doi: 10.1042/bj0970833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Neidle A., van den Berg C. J., Grynbaum A. The heterogeneity of rat brain mitochondria isolated on continuous sucrose gradients. J Neurochem. 1969 Feb;16(2):225–234. doi: 10.1111/j.1471-4159.1969.tb05940.x. [DOI] [PubMed] [Google Scholar]
  16. Ozawa K., Seta K., Araki H., Handa H. Rapid liberation of potassium ions from brain mitochondria. J Biochem. 1967 Nov;62(5):584–590. doi: 10.1093/oxfordjournals.jbchem.a128708. [DOI] [PubMed] [Google Scholar]
  17. PETTE D., KLINGENBERG M., BUECHER T. Comparable and specific proportions in the mitochondrial enzyme activity pattern. Biochem Biophys Res Commun. 1962 Jun 4;7:425–429. doi: 10.1016/0006-291x(62)90328-5. [DOI] [PubMed] [Google Scholar]
  18. RODRIGUEZ DE LORES ARNAIZ G., DE ROBERTIS E. D. Cholinergic and non-cholinergic nerve endings in the rat brain. II. Subcellular localization of monoamine oxidase and succinate dehydrogenase. J Neurochem. 1962 Sep-Oct;9:503–508. doi: 10.1111/j.1471-4159.1962.tb04203.x. [DOI] [PubMed] [Google Scholar]
  19. Rappaport C., Howze G. B. Further studies on the dissociation of adult mouse tissue. Proc Soc Exp Biol Med. 1966 Apr;121(4):1016–1021. doi: 10.3181/00379727-121-30952. [DOI] [PubMed] [Google Scholar]
  20. Rose S. P. Preparation of enriched fractions from cerebral cortex containing isolated, metabolically active neuronal and glial cells. Biochem J. 1967 Jan;102(1):33–43. doi: 10.1042/bj1020033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SHIMIZU N., MORIKAWA N. Histochemical studies of succinic dehydrogenase of the brain of mice, rats, guinea pigs and rabbits. J Histochem Cytochem. 1957 Jul;5(4):334–345. doi: 10.1177/5.4.334. [DOI] [PubMed] [Google Scholar]
  22. Schnaitman C., Erwin V. G., Greenawalt J. W. The submitochondrial localization of monoamine oxidase. An enzymatic marker for the outer membrane of rat liver mitochondria. J Cell Biol. 1967 Mar;32(3):719–735. doi: 10.1083/jcb.32.3.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. TABOR C. W., TABOR H., ROSENTHAL S. M. Purification of amine oxidase from beef plasma. J Biol Chem. 1954 Jun;208(2):645–661. [PubMed] [Google Scholar]
  24. Tipton K. F., Dawson A. P. The distribution of monoamine oxidase and alpha-glycerophosphate dehydrogenase in pig brain. Biochem J. 1968 Jun;108(1):95–99. doi: 10.1042/bj1080095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. WURTMAN R. J., AXELROD J. A SENSITIVE AND SPECIFIC ASSAY FOR THE ESTIMATION OF MONOAMINE OXIDASE. Biochem Pharmacol. 1963 Dec;12:1439–1441. doi: 10.1016/0006-2952(63)90215-6. [DOI] [PubMed] [Google Scholar]
  26. Whittaker V. P. The morphology of fractions of rat forebrain synaptosomes separated on continuous sucrose density gradients. Biochem J. 1968 Jan;106(2):412–417. doi: 10.1042/bj1060412. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES