Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1970 May 1;45(2):246–271. doi: 10.1083/jcb.45.2.246

SCALE FORMATION IN CHRYSOPHYCEAN ALGAE

I. Cellulosic and Noncellulosic Wall Components Made by the Golgi Apparatus

R Malcolm Brown Jr 1, Werner W Franke 1, Hans Kleinig 1, Heinz Falk 1, Peter Sitte 1
PMCID: PMC2107912  PMID: 5513606

Abstract

The cell wall of the marine chrysophycean alga Pleurochrysis scherfellii is composed of distinct wall fragments embedded in a gelatinous mass. The latter is a polysaccharide of pectic character which is rich in galactose and ribose. These wall fragments are identified as scales. They have been isolated and purified from the vegetative mother cell walls after zoospore formation. Their ultrastructure is described in an electron microscope study combining sectioning, freeze-etch, and negative staining techniques. The scales consist of a layer of concentrically arranged microfibrils (ribbons with cross-sections of 12 to 25 x 25 to 40 A) and underlying radial fibrils of similar dimensions. Such a network-plate is densely coated with particles which are assumed to be identical to the pectic component. The microfibrils are resistant to strong alkaline treatment and have been identified as cellulose by different methods, including sugar analysis after total hydrolysis, proton resonance spectroscopical examination (NMR spectroscopy) of the benzoylated product, and diverse histochemical tests. The formation and secretion of the scales can be followed along the maturing Golgi cisternae starting from a pronounced dilated "polymerization center" as a completely intracisternal process which ends in the exocytotic extrusion of the scales. The scales reveal the very same ultrastructure within the Golgi cisternae as they do in the cell wall. The present finding represents the first evidence on cellulose formation by the Golgi apparatus and is discussed in relation to a basic scheme for cellulose synthesis in plant cells in general.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beams H. W., Kessel R. G. The Golgi apparatus: structure and function. Int Rev Cytol. 1968;23:209–276. doi: 10.1016/s0074-7696(08)60273-9. [DOI] [PubMed] [Google Scholar]
  2. Brown R. M., Jr, Franke W. W., Kleinig H., Falk H., Sitte P. Cellulosic wall component produced by the golgi apparatus of Pleurochrysis scherffelii. Science. 1969 Nov 14;166(3907):894–896. doi: 10.1126/science.166.3907.894. [DOI] [PubMed] [Google Scholar]
  3. Brown R. M., Jr Observations on the relationship of the golgi apparatus to wall formation in the marine chrysophycean alga Pleurochrysis scherffelii Pringsheim. J Cell Biol. 1969 Apr;41(1):109–123. doi: 10.1083/jcb.41.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. COLVIN J. R., DENNIS D. T. THE SHAPE OF THE TIPS OF GROWING BACTERIAL CELLULOSE MICROFIBRILS AND ITS RELATION TO THE MECHANISM OF CELLULOSE BIOSYNTHESIS. Can J Microbiol. 1964 Oct;10:763–767. doi: 10.1139/m64-097. [DOI] [PubMed] [Google Scholar]
  5. CRONSHAW J., MYERS A., PRESTON R. D. A chemical and physical investigation of the cell walls of some marine algae. Biochim Biophys Acta. 1958 Jan;27(1):89–103. doi: 10.1016/0006-3002(58)90295-6. [DOI] [PubMed] [Google Scholar]
  6. Falk H., Kleinig H. Feinbau und Carotinoide von Tribonema (Xanthophyceae) Arch Mikrobiol. 1968;61(4):347–362. [PubMed] [Google Scholar]
  7. Franke W. W., Falk H. Enzymatisch isolierte Cellulose-Fibrillen der Valonia-Zellwand. Z Naturforsch B. 1968 Feb;23(2):272–274. [PubMed] [Google Scholar]
  8. Franke W. W., Krien S., Brown R. M., Jr Simultaneous glutaraldehyde-osmium tetroxide fixation with postosmication. An improved fixation procedure for electron microscopy of plant and animal cells. Histochemie. 1969;19(2):162–164. doi: 10.1007/BF00281096. [DOI] [PubMed] [Google Scholar]
  9. GERLACH E., DEUTICKE B. EINE EINFACHE METHODE ZUR MIKROBESTIMMUNG VON PHOSPHAT IN DER PAPIERCHROMATOGRAPHIE. Biochem Z. 1963 Jul 26;337:477–479. [PubMed] [Google Scholar]
  10. GIBBS S. P. Nuclear envelope-chloroplast relationships in algae. J Cell Biol. 1962 Sep;14:433–444. doi: 10.1083/jcb.14.3.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. GUENTHER I. [Electron-microscopic studies of the germinating spores of Funaria hygrometrica]. J Ultrastruct Res. 1960 Dec;4:304–331. doi: 10.1016/s0022-5320(60)80025-1. [DOI] [PubMed] [Google Scholar]
  12. Grove S. N., Bracker C. E., Morré D. J. Cytomembrane differentiation in the endoplasmic reticulum-Golgi apparatus-vesicle complex. Science. 1968 Jul 12;161(3837):171–173. doi: 10.1126/science.161.3837.171. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. MOOR H. DIE GEFRIER-FIXATION LEBENDER ZELLEN UND IHRE ANWENDUNG IN DER ELEKTRONENMIKROSKOPIE. Z Zellforsch Mikrosk Anat. 1964 Apr 28;62:546–580. [PubMed] [Google Scholar]
  15. Manton I. Further observations on scale formation in Chrysochromulina chiton. J Cell Sci. 1967 Sep;2(3):411–418. doi: 10.1242/jcs.2.3.411. [DOI] [PubMed] [Google Scholar]
  16. Manton I. Observations on scale production in Prymnesium parvum. J Cell Sci. 1966 Sep;1(3):375–380. doi: 10.1242/jcs.1.3.375. [DOI] [PubMed] [Google Scholar]
  17. Neutra M., Leblond C. P. Synthesis of the carbohydrate of mucus in the golgi complex as shown by electron microscope radioautography of goblet cells from rats injected with glucose-H3. J Cell Biol. 1966 Jul;30(1):119–136. doi: 10.1083/jcb.30.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nevo Z., Sharon N. The cell wall of Peridinium westii, a non celluosic glucan. Biochim Biophys Acta. 1969 Mar 11;173(2):161–175. doi: 10.1016/0005-2736(69)90099-6. [DOI] [PubMed] [Google Scholar]
  19. Northcote D. H., Pickett-Heaps J. D. A function of the Golgi apparatus in polysaccharide synthesis and transport in the root-cap cells of wheat. Biochem J. 1966 Jan;98(1):159–167. doi: 10.1042/bj0980159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. OHAD I., DANON D. ON THE DIMENSIONS OF CELLULOSE MICROFIBRILS. J Cell Biol. 1964 Jul;22:302–305. doi: 10.1083/jcb.22.1.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. PRINGSHEIM E. G. Kleine Mitteilungen über Flagellaten und Algen. I. Algenartige Chrysophyceen in Reinkultur. Arch Mikrobiol. 1955;21(4):401–410. [PubMed] [Google Scholar]
  22. Pienaar R. N. The fine structure of Cricosphaera carterae. I. External morphology. J Cell Sci. 1969 Mar;4(2):561–567. doi: 10.1242/jcs.4.2.561. [DOI] [PubMed] [Google Scholar]
  23. Schnepf E., Deichgräber G., Koch W. Uber das Vorkommen und den Bau gestielter "Hüllen" bei Ochromonas malhamensis Pringsheim O. sociabilis nom. prov. Pringsheim. Arch Mikrobiol. 1968;63(1):15–25. doi: 10.1007/BF00407060. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES