Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1970 Feb 1;44(2):290–304. doi: 10.1083/jcb.44.2.290

MACROMOLECULAR PHYSIOLOGY OF PLASTIDS

VIII. Pigment and Membrane Formation in Plastids of Barley Greening under Low Light Intensity

K W Henningsen 1, J E Boynton 1
PMCID: PMC2107941  PMID: 5411076

Abstract

Sequential changes occurring in the etioplasts of the primary leaf of 7-day-old dark-grown barley seedlings upon continuous illumination with 20 lux have been investigated by electron microscopy, in vivo spectrophotometry, and thin-layer chromatography. Following photoconversion of the protochlorophyllide pigment to chlorophyllide and the structural transformation of the crystalline prolamellar bodies, the tubules of the prolamellar bodies are dispersed into the primary lamellar layers. As both chlorophyll a and b accumulate, extensive formation of grana takes place. After 4 hr of greening, protochlorophyllide starts to reaccumulate, and concomitantly both large and small crystalline prolamellar bodies are formed. This protochlorophyllide is rapidly photoconverted upon exposure of the leaves to high light intensity, which also effects a rapid reorganization of the recrystallized prolamellar bodies into primary lamellar layers.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akoyunoglou G. A., Siegelman H. W. Protochlorophyllide resynthesis in dark-grown bean leaves. Plant Physiol. 1968 Jan;43(1):66–68. doi: 10.1104/pp.43.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bachmann M. D., Robertson D. S., Bowen C. C., Anderson I. C. Chloroplast development in pigment deficient mutants of maize. I. Structural anomalies in plastids of allelic mutants at the w3 locus. J Ultrastruct Res. 1967 Nov;21(1):41–60. doi: 10.1016/s0022-5320(67)80005-4. [DOI] [PubMed] [Google Scholar]
  3. Bartels P. G., Weier T. E. Particle arrangements in proplastids of Triticum vulgare L. seedlings. J Cell Biol. 1967 May;33(2):243–253. doi: 10.1083/jcb.33.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. EILAM Y., KLEIN S. The effect of light intensity and sucrose feeding on the fine structure in chloroplasts and on the chlorophyll content of etiolated leaves. J Cell Biol. 1962 Aug;14:169–182. doi: 10.1083/jcb.14.2.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HEITZ E. Kristallgitterstruktur des Granum junger Chloroplasten von Chlorophytum. Exp Cell Res. 1954 Nov;7(2):606–608. doi: 10.1016/s0014-4827(54)80114-5. [DOI] [PubMed] [Google Scholar]
  6. HODGE A. J., MCLEAN J. D., MERCER F. V. A possible mechanism for the morphogenesis of lamellar systems in plant cells. J Biophys Biochem Cytol. 1956 Sep 25;2(5):597–608. doi: 10.1083/jcb.2.5.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kowallik W. Action spectrum for an enhancement of endogenous respiration by light in chlorella. Plant Physiol. 1967 May;42(5):672–676. doi: 10.1104/pp.42.5.672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LEYON H. The structure of chloroplasts. IV. The development and structure of the Aspidistra chloroplast. Exp Cell Res. 1954 Aug;7(1):265–273. doi: 10.1016/0014-4827(54)90061-0. [DOI] [PubMed] [Google Scholar]
  9. MUEHLETHALER K., FREY-WYSSLING A. [Development and structure of proplastids]. J Biophys Biochem Cytol. 1959 Dec;6:507–512. [PMC free article] [PubMed] [Google Scholar]
  10. Pickett J. M., French C. S. The action spectrum for blue-light-stimulated oxygen uptake in Chlorella. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1587–1593. doi: 10.1073/pnas.57.6.1587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ried A. Interactions between photosynthesis and respiration in chlorella. I. Types of transients of oxygen exchange after short light exposures. Biochim Biophys Acta. 1968 Apr 2;153(3):653–663. doi: 10.1016/0005-2728(68)90192-8. [DOI] [PubMed] [Google Scholar]
  12. Schneider H. A. Eine einfache Methode zur dünnschichtchromatographischen Trennung von Plastidenpigmenten. J Chromatogr. 1966 Mar;21(3):448–453. doi: 10.1016/s0021-9673(01)91339-1. [DOI] [PubMed] [Google Scholar]
  13. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  14. WOLFF J. B., PRICE L. Terminal steps of chlorophyll A biosynthesis in higher plants. Arch Biochem Biophys. 1957 Dec;72(2):293–301. doi: 10.1016/0003-9861(57)90205-9. [DOI] [PubMed] [Google Scholar]
  15. WOLFF J. B., PRICE L. The effect of sugars on chlorophyll biosynthesis in higher plants. J Biol Chem. 1960 Jun;235:1603–1608. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES